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release: 1.3.1

Sarus is a software to run Linux containers on High Performance Computing environments. Its development has been
driven by the specific requirements of HPC systems, while leveraging open standards and technologies to encourage
vendor and community involvement.

Key features:

• Spawning of isolated software environments (containers), built by users to fit the deployment of a specific
application

• Security oriented to HPC systems

• Extensible runtime by means of OCI hooks to allow current and future support of custom hardware while
achieving native performance

• Creation of container filesystems tailored for diskless nodes and parallel filesystems

• Compatibility with the presence of a workload manager

• Compatibility with the Open Container Initiative (OCI) standards:

– Can pull images from registries adopting the OCI Distribution Specification or the Docker Registry HTTP
API V2 protocol

– Can import and convert images adopting the OCI Image Format

– Sets up a container bundle complying to the OCI Runtime Specification

– Uses an OCI-compliant runtime to spawn the container process
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1.1 Quickstart

1.1.1 Install Sarus

You can quickly install Sarus by following the simple steps below.

1. Download the latest standalone Sarus archive from the official GitHub Releases:

mkdir /opt/sarus
cd /opt/sarus
# Adjust url to your preferred version
wget https://github.com/eth-cscs/sarus/releases/download/1.0.1/sarus-Release.tar.
→˓gz

2. Extract Sarus in the installation directory:

cd /opt/sarus
tar xf sarus-Release.tar.gz

3. Run the configuration script to finalize the installation of Sarus:

cd /opt/sarus/1.0.1-Release # adapt folder name to actual version of Sarus
sudo ./configure_installation.sh

Important: The configuration script needs to run with root privileges in order to set Sarus as a root-owned
SUID program.

The configuration script requires the program mksquashfs to be installed on the system, which is typically
available through the squashfs-tools package.

Also note that the configuration script will create a minimal working configuration. For enabling additional
features, please refer to the Configuration file reference.
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Note: You can refer to the section Custom installation if you want to build Sarus from source or from the Spack
package manager.

Important: As explained by the output of the previous script, you need to persistently add Sarus to your PATH.
I.e., something like adding “export PATH=/opt/sarus/bin:${PATH}” to your .bashrc.

4. Perform the Post-installation actions.

Note: The Sarus binary from the standalone archive looks for SSL certificates into the /etc/ssl directory.
Depending on the Linux distribution, some certificates may be located in different directories. A possible
solution to expose the certificates to Sarus is a symlink. For example, on CentOS 7 and Fedora 31:

sudo ln -s /etc/pki/ca-trust/extracted/pem/tls-ca-bundle.pem /etc/ssl/cert.pem

1.1.2 Use Sarus

Now Sarus is ready to be used. Below is a list of the available commands:

help: Print help message about a command
images: List images
load: Load the contents of a tarball to create a filesystem image
pull: Pull an image from a registry
rmi: Remove an image
run: Run a command in a new container
ssh-keygen: Generate the SSH keys in the local repository
version: Show the Sarus version information

Below is an example of some basic usage of Sarus:

$ sarus pull alpine
# image : index.docker.io/library/alpine/latest
# cache directory : "/home/user/.sarus/cache"
# temp directory : "/tmp"
# images directory : "/home/user/.sarus/images"
> save image layers ...
> pulling :
→˓sha256:9d48c3bd43c520dc2784e868a780e976b207cbf493eaff8c6596eb871cbd9609
> completed :
→˓sha256:9d48c3bd43c520dc2784e868a780e976b207cbf493eaff8c6596eb871cbd9609
> expanding image layers ...
> extracting : "/home/user/.sarus/cache/
→˓sha256:9d48c3bd43c520dc2784e868a780e976b207cbf493eaff8c6596eb871cbd9609.tar"
> make squashfs image: "/home/user/.sarus/images/index.docker.io/library/alpine/
→˓latest.squashfs"

$ sarus images
REPOSITORY TAG DIGEST CREATED SIZE SERVER
alpine latest 65e50dd72f89 2019-08-21T16:07:06 2.59MB index.
→˓docker.io

(continues on next page)
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(continued from previous page)

$ sarus run alpine cat /etc/os-release
NAME="Alpine Linux"
ID=alpine
VERSION_ID=3.10.2
PRETTY_NAME="Alpine Linux v3.10"
HOME_URL="https://alpinelinux.org/"
BUG_REPORT_URL="https://bugs.alpinelinux.org/"

Note: You can refer to the section User guides for more information on how to use Sarus.

1.2 Overview

Sarus is a tool for High-Performance Computing (HPC) systems that provides a user-friendly way to instantiate
feature-rich containers from Docker images. It has been designed to address the unique requirements of HPC in-
stallations, such as: native performance from dedicated hardware, improved security due to the multi-tenant nature
of the systems, support for network parallel filesystems and diskless computing nodes, compatibility with a workload
manager or job scheduler.

Keeping flexibility, extensibility and community efforts in high regard, Sarus relies on industry standards and open
source software. Consider for instance the use of runc, an OCI-compliant container runtime that is also used internally
by Docker. Moreover, Sarus leverages the Open Containers Initiative (OCI) specifications to extend the capabilities
of runc and enable multiple high-performance features. In the same vein, Sarus depends on a widely-used set of
libraries, tools, and technologies to reap several benefits: reduce maintenance effort and lower the entry barrier for
service providers wishing to install the software, or for developers seeking to contribute code.

1.2.1 Sarus architecture

The workflows supported by Sarus are implemented through the interaction of several software components. The CLI
component processes the program arguments entered through the command line and calls other components to perform
the actions requested by the user. The Image Manager component is responsible for importing container images onto
the system (usually by downloading them from a remote registry), converting the images to Sarus’s own format, storing
them on local system repositories, and querying the contents of such repositories. The Runtime component creates
and executes containers, first by setting up a bundle according to the OCI Runtime Specification: such bundle is made
of a root filesystem directory for the container and a JSON configuration file. After preparing the bundle, the Runtime
component will call an external OCI runtime (such as runc), which will effectively spawn the container process.
Sarus can instruct the OCI runtime to use one or more OCI hooks, small programs able to perform actions (usually
related to container customization) at selected points during the container lifetime.

In the following sections, we will illustrate how Sarus performs some of its fundamental operations, highlighting the
motivations and purposes of the implemented solutions.

1.2. Overview 5
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SARUS

Fig. 1: Sarus architecture diagram

1.2.2 Importing container images

One of the first actions a user will perform with a fresh Sarus installation is getting some container images on the
system. This is usually accomplished by retrieving the images from a remote cloud registry (e.g. Docker Hub) using
the sarus pull command.

Sarus is able to communicate with registries using the Docker Registry HTTP API V2 protocol or the OCI Distribution
Specification API protocol. After contacting the registry, Sarus obtains the image manifest, a file providing the list of
filesystem layers and metadata which constitute the image. Sarus uses multiple parallel threads to download the layers
as compressed archives in a cache directory. This download cache will be looked-up by Sarus during subsequent pull
commands to determine if a compressed layer has already been downloaded and can be reused.

Once the filesystem layers of a container image are all present on the system, they are uncompressed and expanded
in a temporary directory created by Sarus for this purpose. The various layers are then squashed together, resulting
in a flattened image using the squashfs format. A metadata file is also generated from a subset of the OCI image
configuration. Flattening the image improves the I/O performance of the container, as detailed below in Root filesystem.
It also has the benefit of reducing the size of the images on disk, by merging the topmost layer with the underlying
ones.

When pulling images from the cloud is inconvenient or undesirable, the sarus load command can be used to load
a container image from a local tar file. In this case, the image manifest and compressed filesystem layers are not
downloaded but extracted from the tar archive itself. The process then continues as described above.

After the squashfs image and the metadata file are generated, Sarus copies them into the local user repository, described
in the next section.
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1.2.3 Local system repositories

Sarus stores images available on the system in local repositories, which are individual for each user. The application
expects to access a configurable base path, where directories named after users are located. Sarus will look for a local
repository in the <base path>/<user name>/.sarus path. If a repository does not exist, a new, empty one is
created.

A local repository is a directory containing at least:

• the cache directory for the downloaded image layers;

• the images directory for Sarus images: inside this directory, images are stored in a hierarchy with the for-
mat <registry server>/<repository>/<image name>, designed to replicate the structure of the
strings used to identify images. At the end of a pull or load process, Sarus copies the image squashfs and meta-
data files into the last folder of the hierarchy, named after the image, and sets the names of both files to match
the image tag;

• the metadata.json file indexing the contents of the images folder

Local repository

metadata.json

cache

images

index.docker.io

library

ubuntu

latest.meta

latest.squashfs

Fig. 2: Structure of a Sarus local repository

Sarus can also be configured to create a system-wide centralized repository. Such repository is intended to broadcast
images to users, e.g. in cases when said images cannot be freely redistributed. The centralized repository is meant to
be read-only for regular users, and its contents should be modifiable only by the system administrators.

1.2. Overview 7
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Users can query the contents of the individual and centralized repositories using the sarus images command.

1.2.4 Container instantiation

The Runtime component of Sarus is responsible for setting up and coordinating the launch of container instances.
When the user requests the execution of a container process through the sarus run command, an OCI bundle is
first created in a dedicated directory. As mentioned above, an OCI bundle is defined by the OCI Runtime Specification
as the content from which an OCI-compliant low-level runtime, e.g. runc, will spawn a container. The bundle is formed
by a rootfs directory, containing the root filesystem for the container, and a config.json file providing detailed settings
to the OCI runtime.

Before actually generating the contents of the bundle, Sarus will create and join a new Linux mount namespace in order
to make the mount points of the container inaccessible from the host system. An in-memory temporary filesystem is
then mounted on the directory designated to host the OCI bundle. This process yields several beneficial effects, e.g.:

• Unsharing the mount namespace prevents other processes of the host system from having visibility on any
artifact related to the container instance [unshare-manpage] [mount-namespace-manpage].

• The newly-created mount namespace will be deleted once the container and Sarus processes exit; thus, setting
up the bundle in a filesystem that belongs only to the mount namespace of the Sarus process ensures complete
cleanup of container resources upon termination.

• Creating the bundle, and consequently the container rootfs, in an in-memory temporary filesystem improves the
performance of the container writable layer. This solution also suits diskless computing nodes (e.g. as those
found in Cray XC systems), where the host filesystem also resides in RAM.

In the next subsections, we will describe the generation of the bundle contents in more detail.

Root filesystem

The root filesystem for the container is assembled in a dedicated directory inside the OCI bundle location through
several steps:

1. The squashfs file corresponding to the image requested by the user is mounted as a loop device on the configured
rootfs mount point. The loop mount allows access to the image filesystem as if it resided on a real block device
(i.e. a storage drive). Since Sarus images are likely to be stored on network parallel filesystems, reading multiple
different files from the image1 causes the thrashing of filesystem metadata, and consequently a significant performance
degradation. Loop mounting the image prevents metadata thrashing and improves caching behavior, as all container
instances access a single squashfs file on the parallel filesystem. The effectiveness of this approach has already been
demonstrated by Shifter [ShifterCUG2015].

2. Sarus proceeds to create an overlay filesystem. An overlay filesystem, as the name suggests, is formed by two
different filesystem layers on top of each other (thus called respectively upper and lower), but it is presented as a
single entity which combines both. The loop-mounted image is re-used as the read-only lower layer, while part of the
OCI bundle temporary filesystem forms the writable upper layer. An overlay filesystem allows the contents of Sarus
containers to be transparently modifiable by the users, while preserving the integrity of container images: modifications
exist only in the overlay upper filesystem, while corresponding entries in the lower filesystem are hidden. Please refer
to the official OverlayFS documentation for more details.

3. Selected system configuration files (e.g. /etc/hosts, /etc/passwd, /etc/group) are copied into the
rootfs of the container. These configurations are required to properly setup core functionality of the container in a
multi-tenant cluster system, for example file permissions in shared directories, or networking with other computing
nodes.

1 A prominent use case is, for example, a Python application.
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4. Custom mounts are performed. These are bind mounts requested by the system administrator or by the user to
customize the container according to the needs and resources of an HPC system or a specific use case.

5. The container’s rootfs is completed by finally remounting the filesystem to remove potential suid bits from all its
files and directories.

Read-only layer (lower)
Writable layer (upper)

Custom mounts

unshare

Temporary RAM Filesystem

OCI Bundle
directory

config.json

rootfs

Squashfs
image

Loop mount

Host
filesystem

Fig. 3: OCI bundle setup in Sarus

config.json

The JSON configuration file of the OCI bundle is generated by combining data from the runtime execution context,
command-line parameters and parameters coming from the image. We hereby highlight the most important details:

• The uid/gid of the user from the host system are assigned to the container process, regardless of the user settings
in the original image. This is done to keep a consistent experience with the host system, especially regarding
file ownership and access permissions.

• If the image specified an entrypoint or default arguments, these are honored, unless the user specifies an override
through Sarus’s command line. For more details, please refer to this section of the User Guide.

• The container environment variables are created by uniting the variables from the host environment and the
variables from the image. If a variable exists in both the host and the image, the value from the image is taken.
This ensures the container behaves as expected by its creators (e.g. in the case of PATH). Selected variables
are also adapted by Sarus to suit system-specific extensions, like NVIDIA GPU support, native MPI support or
container SSH connections.

• If the image specifies a working directory, the container process is started there. Otherwise, the process is started
in the container’s root directory. In this regard, Sarus shows the same behavior as Docker.

• The container process is configured to run with all Linux capabilities disabled2, thus preventing it from acquiring
new privileges by any means. This is done in the interest of security.

2 Linux divides the privileges traditionally associated with superuser into distinct units, known as capabilities.

1.2. Overview 9
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• New PID and mount namespaces are setup for the container process.

• Settings for OCI hooks are generated from the OCI hook JSON configuration files which are configured by the
sysadmin.

Container launch

Once the bundle’s rootfs directory and confg.json file are in place, Sarus forks a process calling an OCI-compliant
runtime, which in turn spawns and maintains the container process.

The OCI runtime is also in charge of executing the OCI hooks specified by Sarus. Hooks are an effective way of
extending the functionality provided by the container runtime without additional development or maintenance effort
on the runtime itself. In the context of HPC, hooks have shown the potential to augment containers based on open
standards with native support for dedicated custom hardware, like accelerators or interconnect technologies, by letting
vendors and third-party developers create ad hoc hook programs.

Once the container and OCI runtime processes terminate, Sarus itself concludes its workflow and exits.

1.3 Custom installation

1.3.1 Requirements

Operating System

• Linux kernel >= 3.0

• util-linux >= 2.20 (these utilities are usually bundled with the Linux distribution itself; v2.20 was released in
August 2011)

• The following kernel modules loaded:

– loop

– squashfs

– overlayfs

Software

System packages

For Debian-based systems (tested on Debian 10 and Ubuntu 18.04):

# Install packages
sudo apt-get update --fix-missing
sudo apt-get install -y --no-install-recommends build-essential
sudo apt-get install -y --no-install-recommends \

kmod rsync curl gdb git vim autoconf automake libtool \
squashfs-tools libcap-dev cmake wget zlib1g-dev libssl-dev \
libexpat1-dev ca-certificates \
python3 python3-pip python3-setuptools

sudo apt-get clean
sudo rm -rf /var/lib/apt/lists/*
sudo update-ca-certificates

10 Chapter 1. Publications
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For CentOS 7:

# Install packages
sudo yum install -y epel-release
sudo yum install -y centos-release-scl-rh
sudo yum install -y devtoolset-8-gcc-c++ glibc-static sudo curl wget rsync which \

make bzip2 autoconf automake libtool squashfs-tools libcap-devel cmake3 \
zlib-devel zlib-static openssl-devel expat-devel git \
python3 python3-pip python3-setuptools

sudo yum clean all
sudo rm -rf /var/cache/yum

# Create symlink to cmake3 to uniform commands with other distributions
sudo ln -s /usr/bin/cmake3 /usr/bin/cmake
sudo ln -s /usr/bin/ctest3 /usr/bin/ctest

# Enable devtoolset-3 to use GCC 4.9.2
source /opt/rh/devtoolset-8/enable

Python 3 is required if you are interested to also run the integration tests:

# Debian/Ubuntu
$ sudo apt-get install python3 python3-pip python3-setuptools

# CentOS
$ sudo yum install python3 python3-pip python3-setuptools

# All platforms, after installing Python + pip
$ pip3 install setuptools
$ pip3 install pytest gcovr pexpect

Note: If you plan to install Sarus using the Spack package manager, you can skip the rest of this page, since the
remaining dependencies will be installed by Spack itself.

Additional dependencies

• libarchive 3.4.1

• Boost libraries >= 1.60.x (recommended 1.65.x)

• C++ REST SDK v2.10.0

• RapidJSON commit 663f076

Important: We recommend these versions as they are the ones routinely used for build integration and testing, thus
guaranteed to work.

As the specific software versions listed above may not be provided by the system package manager, we suggest to
install from source:

Note: The following instructions will default to /usr/local as the installation prefix. To install to a specific loca-
tion, use the -DCMAKE_INSTALL_PREFIX CMake options for libarchive and C++ REST SDK and the --prefix
option for the Boost libraries.

1.3. Custom installation 11
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pwd_bak=$PWD

# Install boost
cd /tmp && \

mkdir -p boost/1_65_0 && cd boost/1_65_0 && \
wget https://downloads.sourceforge.net/project/boost/boost/1.65.0/boost_1_65_0.

→˓tar.bz2 && \
tar xf boost_1_65_0.tar.bz2 && \
mv boost_1_65_0 src && cd src && \
./bootstrap.sh && \
sudo ./b2 -j$(nproc) \

--with-atomic \
--with-chrono \
--with-filesystem \
--with-random \
--with-regex \
--with-system \
--with-thread \
--with-program_options \
--with-date_time \
install && \

cd ${pwd_bak} && \
rm -rf /tmp/boost

pwd_bak=$PWD

# Install libarchive
cd /tmp && \

mkdir -p libarchive/3.4.1 && \
cd libarchive/3.4.1 && \
wget https://github.com/libarchive/libarchive/releases/download/v3.4.1/libarchive-

→˓3.4.1.tar.gz && \
tar xvf libarchive-3.4.1.tar.gz && \
mv libarchive-3.4.1 src && \
mkdir src/build-cmake && cd src/build-cmake && \
cmake .. && \
make -j$(nproc) && \
sudo make install && \
cd ${pwd_bak} && \
rm -rf /tmp/libarchive

pwd_bak=$PWD

# Install cpprestsdk
cd /tmp && \

([ -e /usr/include/xlocale.h ] || ln -s /usr/include/locale.h /usr/include/
→˓xlocale.h) && \

mkdir -p cpprestsdk/v2.10.0 && cd cpprestsdk/v2.10.0 && \
wget https://github.com/Microsoft/cpprestsdk/archive/v2.10.0.tar.gz && \
tar xf v2.10.0.tar.gz && \
mv cpprestsdk-2.10.0 src && cd src/Release && \
mkdir -p build && cd build && \
cmake -DCMAKE_BUILD_TYPE=Debug -DBUILD_SHARED_LIBS=0 -DWERROR=FALSE .. && \
sed -i /tmp/cpprestsdk/v2.10.0/src/Release/include/cpprest/asyncrt_utils.h -e '1s/

→˓^/#include <sys\/time.h>\n/' || true && \
make -j$(nproc) && \
sudo make install && \

(continues on next page)
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(continued from previous page)

cd ${pwd_bak} && \
rm -rf /tmp/cpprestsdk

pwd_bak=$PWD

# Install RapidJSON
cd /tmp && \

mkdir -p rapidjson && cd rapidjson && \
wget -O rapidjson-master.tar.gz https://github.com/Tencent/rapidjson/archive/

→˓663f076c7b44ce96526d1acfda3fa46971c8af31.tar.gz && \
tar xvzf rapidjson-master.tar.gz && \
cd rapidjson-663f076c7b44ce96526d1acfda3fa46971c8af31 && \
sudo mkdir -p /usr/local/include/rapidjson && sudo cp -r include/rapidjson /usr/

→˓local/include/rapidjson && \
cd ${pwd_bak} && \
rm -rf /tmp/rapidjson

Note: Should you have trouble pointing to a specific version of Boost when building the C++ REST SDK, use the
-DBOOST_ROOT CMake option with the prefix directory to your Boost installation.

OCI-compliant runtime

Sarus internally relies on an OCI-compliant runtime to spawn a container.

Here we will provide some indications to install runc, the reference implementation from the Open Container Initiative.
The recommended version is v1.0.0-rc10.

The simplest solution is to download a pre-built binary release from the project’s GitHub page:

pwd_bak=$PWD

# Install runc
cd /tmp && \

wget -O runc.amd64 https://github.com/opencontainers/runc/releases/download/v1.0.
→˓0-rc10/runc.amd64 && \

chmod 755 runc.amd64 && \
sudo mv runc.amd64 /usr/local/bin/ && \
sudo chown root:root /usr/local/bin/runc.amd64 && \
cd ${pwd_bak}

Alternatively, you can follow the instructions to build from source, which allows more fine-grained control over runc’s
features, including security options.

1.3. Custom installation 13
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Init process

Sarus can start an init process within containers in order to reap zombie processes and allow container applications to
receive signals.

Here we will provide some indications to install tini, a very lightweight init process which is also used by Docker. The
recommended version is v0.19.0.

The simplest solution is to download a pre-built binary release from the project’s GitHub page:

pwd_bak=$PWD

# Install tini
cd /tmp && \

wget -O tini-static-amd64 https://github.com/krallin/tini/releases/download/v0.19.
→˓0/tini-static-amd64 && \

chmod 755 tini-static-amd64 && \
sudo mv tini-static-amd64 /usr/local/bin/ && \
sudo chown root:root /usr/local/bin/tini-static-amd64 && \
cd ${pwd_bak}

Alternatively, you can follow the instructions to build from source.

1.3.2 Installation

Sarus can be installed in three alternative ways:

• Using the standalone Sarus archive

• Using the Spack package manager

• Installing from source

When installing from source or with Spack, make sure that the required dependencies are available on the system.

Whichever procedure you choose, please also read the page about Post-installation actions to ensure everything is set
to run Sarus.

Installing with Spack

Sarus provides Spack packages for itself and its dependencies which are not yet covered by Spack’s builtin repository.
Installing with Spack is convenient because detection and installation of dependencies are handled automatically.

As explained in the execution requirements, Sarus must be installed as a root-owned SUID binary in a directory
hierarchy which belongs to the root user at all levels. The straightforward way to achieve this is to use a root-owned
Spack and run the installation procedure with super-user privileges. An alternative procedure for test/development
installations with a non-root Spack is discussed in this subsection.

The installation procedure with Spack follows below. If you are not performing these actions as the root user, prefix
each spack command with sudo:

# Setup Spack bash integration (if you haven't already done so)
. ${SPACK_ROOT}/share/spack/setup-env.sh

# Create a local Spack repository for Sarus-specific dependencies
export SPACK_LOCAL_REPO=${SPACK_ROOT}/var/spack/repos/cscs
spack repo create ${SPACK_LOCAL_REPO}

(continues on next page)
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(continued from previous page)

spack repo add ${SPACK_LOCAL_REPO}

# Import Spack packages for Cpprestsdk, RapidJSON and Sarus
cp -r <Sarus project root dir>/spack/packages/* ${SPACK_LOCAL_REPO}/packages/

# Install Sarus
spack install --verbose sarus

By default, the latest tagged release will be installed. To get the bleeding edge, use the @develop version specifier.

The Spack package for Sarus supports the following variants to customize the installation:

• ssh: Build and install the SSH hook and custom SSH software to enable connections inside containers [True].

• configure_installation: Run the script to setup a starting Sarus configuration as part of the installation
phase. Running the script requires super-user privileges [True].

For example, in order to perform a quick installation without SSH we could use:

spack install --verbose sarus ssh=False

Using Spack as a non-root user (for test and development only)

By default, the Spack package for Sarus will run a configuration script as part of the installation phase to setup
a minimal working configuration. The script needs to run with root privileges, which in turn means the spack
install command must be issued with root powers.

The configure_installation variant of the Spack package allows to control the execution of the script. By
negating the variant, Sarus can be installed as a user different than root. It is then necessary to access the installation
path and run the configuration script directly. While doing so still requires sudo, it can be performed with a user’s
personal Spack software and the amount of root-owned files in the Sarus installation is kept to a minimum.

Installing as non-root likely means that Sarus is located in a directory hierarchy which is not root-owned all the way
up to /. This is not allowed by the program’s security checks, so they have to be disabled.

Important: The ability to disable security checks is only meant as a convenience feature when rapidly iterating over
test and development installations. It is strongly recommended to keep the checks enabled for production deployments.

Sarus can then be loaded and used normally. The procedure is summed up in the following example:

# Setup Spack bash integration (if you haven't already done so)
. ${SPACK_ROOT}/share/spack/setup-env.sh

# Create a local Spack repository for Sarus-specific dependencies
export SPACK_LOCAL_REPO=${SPACK_ROOT}/var/spack/repos/cscs
spack repo create ${SPACK_LOCAL_REPO}
spack repo add ${SPACK_LOCAL_REPO}

# Import Spack packages for Cpprestsdk, RapidJSON and Sarus
cp -r <Sarus project root dir>/spack/packages/* ${SPACK_LOCAL_REPO}/packages/

# Install Sarus skipping the configure_installation script
$ spack install --verbose sarus@develop ~configure_installation

# Use 'spack find' to get the installation directory

(continues on next page)
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(continued from previous page)

$ spack find -p sarus@develop
==> 1 installed package
-- linux-ubuntu18.04-sandybridge / gcc@7.5.0 --------------------
sarus@develop /home/ubuntu/spack/opt/spack/linux-ubuntu18.04-sandybridge/gcc-7.5.0/
→˓sarus-develop-dy4f6tlhx3vwf6zmqityvgdhpnc6clg5

# cd into the installation directory
$ cd /home/ubuntu/spack/opt/spack/linux-ubuntu18.04-sandybridge/gcc-7.5.0/sarus-
→˓develop-dy4f6tlhx3vwf6zmqityvgdhpnc6clg5

# Run configure_installation script
$ sudo ./configure_installation.sh

# Disable security checks
$ sudo sed -i -e 's/"securityChecks": true/"securityChecks": false/' etc/sarus.json

# Return to home folder and test Sarus
$ cd
$ spack load sarus@develop
$ sarus pull alpine
[...]
$ sarus run alpine cat /etc/os-release
NAME="Alpine Linux"
ID=alpine
VERSION_ID=3.11.5
PRETTY_NAME="Alpine Linux v3.11"
HOME_URL="https://alpinelinux.org/"
BUG_REPORT_URL="https://bugs.alpinelinux.org/"

Installing from source

Build and install

Get Sarus source code:

git clone git@github.com:eth-cscs/sarus.git
cd sarus

Create a new folder ${build_dir}} to build Sarus from source. e.g. build-Release:

mkdir -p ${build_dir} && cd ${build_dir}

Configure and build (in this example ${build_type} = Release and ${toolchain_file} = gcc.
cmake:

cmake -DCMAKE_TOOLCHAIN_FILE=${build_dir}/../cmake/toolchain_files/${toolchain_
→˓file} \

-DCMAKE_PREFIX_PATH="/usr/local/include/rapidjson" \
-DCMAKE_BUILD_TYPE=${build_type} \
-DCMAKE_INSTALL_PREFIX=${install_dir} \
..

make -j$(nproc)
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Note: CMake should automatically find the dependencies (include directories, shared objects, and binaries). However,
should CMake not find a dependency, its location can be manually specified through the command line. E.g.:

cmake -DCMAKE_TOOLCHAIN_FILE=../cmake/toolchain_files/gcc.cmake \
-DCMAKE_INSTALL_PREFIX=${prefix_dir} \
-DCMAKE_BUILD_TYPE=Release \
-DCMAKE_PREFIX_PATH="<boost install dir>;<cpprestsdk install dir>;<libarchive

→˓install dir>;<rapidjson install dir>" \
-Dcpprestsdk_INCLUDE_DIR=<cpprestsdk include dir> \
..

Note: Old versions of CMake might have problems finding Boost 1.65.0. We recommend to use at least CMake 3.10
in order to avoid compatibility issues.

Below are listed the Sarus-specific options that can be passed to CMake in order to customize your build:

• CMAKE_INSTALL_PREFIX: installation directory of Sarus [/usr/local].

• ENABLE_SSH: build and install the SSH hook and custom SSH software to enable connections inside containers
[TRUE].

• ENABLE_TESTS_WITH_VALGRIND: run each unit test through valgrind [FALSE].

Copy files to the installation directory:

sudo make install

Create the directory in which Sarus will create the OCI bundle for containers. The location of this directory is config-
urable at any time, as described in the next section. As an example, taking default values:

sudo mkdir -p ${install_dir}/var/OCIBundleDir

Finalize the installation

To complete the installation, run the configuration script located in the installation path. This script needs to run with
root privileges in order to set Sarus as a root-owned SUID program:

sudo cp /usr/local/bin/tini-static-amd64 ${install_dir}/bin || true
sudo cp /usr/local/bin/runc.amd64 ${install_dir}/bin || true

sudo ${install_dir}/configure_installation.sh
export PATH=${install_dir}/bin:${PATH}

Note: The configuration script will create a minimal working configuration. For enabling additional features, please
refer to the Configuration file reference.

As suggested by the output of the script, you should also add Sarus to your PATH. Add a line like export PATH=/
opt/sarus/bin:${PATH} to your .bashrc in order to make the addition persistent.
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1.3.3 Post-installation actions

Review permissions required by Sarus

During execution

• Sarus must run as a root-owned SUID executable and be able to achieve full root privileges to perform mounts
and create namespaces.

• Write/read permissions to the Sarus’s centralized repository. The system administrator can configure the repos-
itory’s location through the centralizedRepositoryDir entry in sarus.json.

• Write/read permissions to the users’ local image repositories. The system administrator can configure the repos-
itories location through the localRepositoryBaseDir entry in sarus.json.

Security related

Because of the considerable power granted by the requirements above, as a security measure Sarus will check that
critical files and directories opened during privileged execution meet the following restrictions:

• They are owned by root.

• They are writable only by the owner.

• All their parent directories (up to the root path) are owned by root.

• All their parent directories (up to the root path) are writable only by the owner (no write permissions to group
users or other users).

The files checked for the security conditions are:

• sarus.json in Sarus’s configuration directory <sarus install prefix>/etc.

• sarus.schema.json in Sarus’s configuration directory <sarus install prefix>/etc.

• The mksquashfs utility pointed by mksquashfsPath in sarus.json.

• The init binary pointed by initPath in sarus.json.

• The OCI-compliant runtime pointed by runcPath in sarus.json.

• All the OCI hooks JSON files in the hooksDir directory specified in sarus.json.

• All the executables specified in the OCI hooks JSON files.

For directories, the conditions apply recursively for all their contents. The checked directories are:

• The directory where Sarus will create the OCI bundle. This location can be configured through the
OCIBundleDir entry in sarus.json.

• If the SSH Hook is installed, the directory of the custom SSH software.

Most security checks can be disabled through the corresponding parameter in the Sarus configuration file. Checks on
sarus.json and sarus.schema.json will always be performed, regardless of the parameter value.

Important: The ability to disable security checks is only meant as a convenience feature when rapidly iterating over
test and development installations. It is strongly recommended to keep the checks enabled for production deployments.
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Load required kernel modules

If the kernel modules listed in Requirements are not loaded automatically by the system, remember to load them
manually:

sudo modprobe loop
sudo modprobe squashfs
sudo modprobe overlay

Automatic update of Sarus’ passwd cache

When executing the configure_installation script, the passwd and group information are copied and cached into
<sarus install prefix>/etc/passwd and <sarus install prefix>/etc/group respectively.
The cache allows to bypass the host’s passwd/group database, e.g. LDAP, which could be tricky to configure and
access from the container. However, since the cache is created/updated only once at installation time, it can quickly
get out-of-sync with the actual passwd/group information of the system. A possible solution is to periodically run a
cron job to refresh the cache. E.g. a cron job and a script like the ones below would do:

$ crontab -l
5 0 * * * update_sarus_user.sh

$ cat update_sarus_user.sh

#!/bin/bash

/usr/bin/getent passwd > <sarus install prefix>/etc/passwd
/usr/bin/getent group > <sarus install prefix>/etc/group

1.4 Configuration

1.4.1 Basic configuration

At run time, the configuration parameters of Sarus are read from a file called sarus.json, which is expected to be a
valid JSON document located in <installation path>/etc. Given the privileges that Sarus requires in order
to exercise its functions, the configuration file must satisfy specific security requirements regarding its location and
ownership.

Using the configure_installation script

The most straightforward way to generate a basic working configuration for a Sarus installation is by using the
configure_installation.sh script, which is found in the top installation directory.

This script will set the proper permissions of the Sarus binary, create the initial caches for passwd and group databases
and fill the necessary parameters of sarus.json.

To accomplish its tasks, the script has to be run as root and has to be located in the top directory of a valid Sarus
installation.

The following is an example script execution (assuming Sarus has been installed in /opt/sarus) with the corre-
sponding output:
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$ sudo /opt/sarus/configure_installation.sh
Setting Sarus as SUID root
Successfully set Sarus as SUID root
Creating cached passwd database
Successfully created cached passwd database
Creating cached group database
Successfully created cached group database
Configuring etc/sarus.json
Successfully configured etc/sarus.json.
To execute sarus commands run first:
export PATH=/opt/sarus/bin:${PATH}
To persist that for future sessions, consider adding the previous line to your .
→˓bashrc or equivalent file

The configuration script is the recommended way to finalize any installation of Sarus, regardless of the installation
method chosen.

Note: Usually it is not necessary to manually run the configuration script after installing Sarus through the Spack
package manager. Unless instructed differently, the Spack package already uses the script internally to create a starting
configuration.

Please note that configure_installation.sh will only create a baseline configuration. To enable more ad-
vanced features of Sarus, sarus.json should be expanded further. Please refer to the Configuration file reference in
order to do so.

The script can also be used on a Sarus installation which has already been configured. In this case, the existing
configuration will be backed up in <installation path>/etc/sarus.json.bak and a new sarus.json file
will be generated.

1.4.2 Configuration file reference

Configuration file entries

securityChecks (bool, REQUIRED)

Enable/disable runtime security checks to verify that security critical files are not tamperable by non-root users. Dis-
abling this may be convenient when rapidly iterating over test and development installations. It is strongly recom-
mended to keep these checks enabled for production deployments. Refer to the section about security requirements
for more details about these checks.

Recommended value: true

OCIBundleDir (string, REQUIRED)

Absolute path to where Sarus will generate an OCI bundle, from which a container will be created. An OCI bundle is
composed by a config.json configuration file and a directory which will form the root filesystem of the container. The
OCIBundleDir directory must satisfy the security requirements for critical files and directories.

Recommended value: /var/sarus/OCIBundleDir
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rootfsFolder (string, REQUIRED)

The name Sarus will assign to the directory inside the OCI bundle; this directory will become the root filesystem of
the container.

Recommended value: rootfs

prefixDir (string, REQUIRED)

Absolute path to the base directory where Sarus has been installed. This path is used to find all needed Sarus-specific
utilities.

Recommended value: /opt/sarus/<version>

hooksDir (string, OPTIONAL)

Absolute path to the directory containing the OCI hook JSON configuration files. See Configuring Sarus for OCI
hooks. Sarus will process the JSON files in hooksDir and generate the configuration file of the OCI bundle accordingly.
The hooks will effectively be called by the OCI-compliant runtime specified by runcPath.

Recommended value: /opt/sarus/<version>/etc/hooks.d

tempDir (string, REQUIRED)

Absolute path to the directory where Sarus will create a temporary folder to expand layers when pulling and loading
images

Recommended value: /tmp

localRepositoryBaseDir (string, REQUIRED)

Absolute base path to individual user directories, where Sarus will create (if necessary) and access local image repos-
itories. The repositories will be located in <localRepositoryBaseDir>/<user name>/.sarus.

Recommended value: /home

centralizedRepositoryDir (string, OPTIONAL)

Absolute path to where Sarus will create (if necessary) and access the system-wide centralized image repository. This
repository is intended to satisfy use cases where an image can only be broadcasted to the users, without allowing them
to pull the image directly (e.g. images that cannot be redistributed due to licensing agreements).

The centralized repository is meant to be read-only for regular users, and its contents should be modifiable only by the
system administrators.

Recommended value: /var/sarus/centralized_repository
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mksquashfsPath (string, REQUIRED)

Absolute path to trusted mksquashfs binary. This executable must satisfy the security requirements for critical files
and directories.

initPath (string, REQUIRED)

Absolute path to trusted init process static binary which will launch the user-specified applications within the container
when the --init option to sarus run is used. This executable must satisfy the security requirements for critical
files and directories.

By default, within the container Sarus only executes the user-specified application, which is assigned PID 1. The PID
1 process has unique features in Linux: most notably, the process will ignore signals by default and zombie processes
will not be reaped inside the container (see [1] , [2] for further reference).

Running the container application through an init system provides a solution for signaling container applications or
reaping processes of long-running containers.

The standalone package of Sarus uses tini as its default init process.

Warning: Some HPC applications may be subject to performance losses when run with an init process. Our
internal benchmarking tests with tini showed overheads of up to 2%.

runcPath (string, REQUIRED)

Absolute path to trusted OCI-compliant runtime binary, which will be used by Sarus to spawn the actual low-level
container process. This executable must satisfy the security requirements for critical files and directories.

ramFilesystemType (string, REQUIRED)

The type of temporary filesystem Sarus will use for setting up the base VFS layer for the container. Must be either
tmpfs or ramfs.

A filesystem of this type is created inside a dedicated mount namespace unshared by Sarus for each container. The
temporary filesystem thus generated will be used as the location of the OCI bundle, including the subsequent mounts
(loop, overlay and, if requested, bind) that will form the container’s rootfs. The in-memory and temporary nature of
this filesystem helps with performance and complete cleanup of all container resources once the Sarus process exits.

Warning: When running on Cray Compute Nodes (CLE 5.2 and 6.0), tmpfs will not work and ramfs has to
be used instead.

Recommended value: tmpfs
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siteMounts (array, OPTIONAL)

List of JSON objects defining filesystem mounts that will be automatically performed from the host system into the
container bundle. This is typically meant to make network filesystems accessible within the container but could be
used to allow certain other facilities.

Each object in the list must define the following fields:

• type (string): The type of the mount. Currently, only bind (for bind-mounts) is supported.

• source (string): Absolute path to the host file/directory that will be mounted into the container.

• destination (string): Absolute path to where the filesystem will be made available inside the container. If
the directory does not exist, it will be created.

Bind mounts

In addition to type, source and destination, bind mounts can optionally add the following field:

• flags (object, OPTIONAL): Object defining the flags for the bind mount. Can have the following fields:

– readonly (string, empty value expected): Mount will be performed as read-only.

By default, bind mounts will always be of recursive private flavor. Refer to the Linux docs for more details.

General remarks

siteMounts are not subject to the limitations of user mounts requested through the CLI. More specifically, these
mounts:

• Can specify any path in the host system as source

• Can specify any path in the container as destination

It is not recommended to bind things under /usr or other common critical paths within containers.

It is OK to perform this under /var or /opt or a novel path that your site maintains (e.g. /scratch).

environment (object, OPTIONAL)

JSON object defining operations to be performed on the environment of the container process. Can have four optional
fields:

• set (array): List of JSON objects containing a single field, meant to represent the key-value pair of an envi-
ronment variable. The variables defined here will be set in the container environment, possibly replacing any
previously existing variables with the same names. Example:

{"CONTAINER_ENVIRONMENT_VARIABLE": "1"}

This can be useful to inform users applications and scripts that they are running inside a Sarus container.

• prepend (array): List of JSON objects containing a single field, meant to represent the key-value pair of
an environment variable. The values will be prepended to the corresponding variables in the container. For
example, this can be used to prepend site-specific locations to PATH.

• append (array): List of JSON objects containing a single field, meant to represent the key-value pair of an
environment variable. The values will be appended to the corresponding variables in the container. For example,
this can be used to append site-specific locations to PATH.
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• unset (array): List of strings representing environment variable names. Variables with the corresponding
names will be unset in the container.

userMounts (object, OPTIONAL)

Normal users have to possibility of requesting custom paths available to them in the host environment to be mapped to
another path inside the container. This is achieved through the --mount option of sarus run. The userMounts
object offers the means to set limitations for this feature through two arrays:

• notAllowedPrefixesOfPath: list of strings representing starting paths. The user will not be able to
enter these paths or any path under them as a mount destination. Default set to ["/etc","/var","/opt/
sarus"].

• notAllowedPaths: list of strings representing exact paths. The user will not be able to enter these paths as
a mount destination. Default set to ["/opt"].

Both these fields and userMounts itself are optional: remove them to lift any restriction.

These limitations apply only to mounts requested through the command line; Mounts entered through siteMounts
are not affected by them.

Example configuration file

{
"securityChecks": true,
"OCIBundleDir": "/var/sarus/OCIBundleDir",
"rootfsFolder": "rootfs",
"prefixDir": "/opt/sarus/1.0.0",
"hooksDir": "/opt/sarus/1.0.0/etc/hooks.d",
"tempDir": "/tmp",
"localRepositoryBaseDir": "/home",
"centralizedRepositoryDir": "/var/sarus/centralized_repository",
"mksquashfsPath": "/usr/sbin/mksquashfs",
"runcPath": "/usr/local/sbin/runc.amd64",
"ramFilesystemType": "tmpfs",
"siteMounts": [

{
"type": "bind",
"source": "/home",
"destination": "/home",
"flags": {}

}
],
"environment": {

"set": [
{"VAR_TO_SET_IN_CONTAINER": "value"}

],
"prepend": [

{"VAR_WITH_LIST_OF_PATHS_IN_CONTAINER": "/path/to/prepend"}
],
"append": [

{"VAR_WITH_LIST_OF_PATHS_IN_CONTAINER": "/path/to/append"}
],
"unset": [

"VAR_TO_UNSET_IN_CONTAINER_0",
"VAR_TO_UNSET_IN_CONTAINER_1"

(continues on next page)
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]
},
"userMounts": {

"notAllowedPrefixesOfPath": [
"/etc",
"/var",
"/opt/sarus"

],
"notAllowedPaths": [

"/opt"
]

}
}

1.4.3 Configuring Sarus for OCI hooks

In order to extend the core functionality provided by a container runtime, the OCI Runtime Specification allows for
components to be hooked into the container’s lifecycle, performing custom actions. These OCI hooks are especially
amenable to HPC use cases, where the dedicated hardware and highly-tuned software adopted by high-performance
systems are in contrast with the platform-agnostic nature of software containers. Effectively, OCI hooks provide solu-
tions for the container runtime to allow access to system-specific features and specialized resources within container
instances.

To enable the use of hooks in Sarus, the hooksDir directory specified in sarus.json must be populated with OCI hook
JSON configuration files. Sarus currently supports the OCI hook schema version 1.0.0.

Sarus parses the JSON files in hooksDir (subdirectories excluded) and, if the when conditions specified in a JSON are
all true, the corresponding OCI hook is inserted into the OCI bundle’s configuration file that is generated by Sarus.

The hooks will effectively be called by the OCI-compliant runtime specified with the runcPath parameter in
sarus.json.

The hooks are inserted into the OCI bundle’s configuration file and executed by the OCI-compliant runtime in the
order obtained by lexicographically sorting the JSON file names.

All the hooks configured in the hooksDir directory must satisfy the security requirements for critical files and directo-
ries.

Hooks use cases

In the following pages, we will provide guidance on how to enable hooks for specific use cases:

Native MPI hook (MPICH-based)

Sarus’s source code includes a hook able to import native MPICH-based MPI implementations inside the container.
This is useful in case the host system features a vendor-specific or high-performance MPI stack based on MPICH (e.g.
Intel MPI, Cray MPI, MVAPICH) which is required to fully leverage a high-speed interconnect.

When activated, the hook will enter the mount namespace of the container, search for dynamically-linkable MPI
libraries and replace them with functional equivalents bind-mounted from the host system.

In order for the replacements to work seamlessly, the hook will check that the host and container MPI implementations
are ABI-compatible according to the standards defined by the MPICH ABI Compatibility Initiative. The Initiative
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is supported by several MPICH-based implementations, among which MVAPICH, Intel MPI, and Cray MPT. ABI
compatibility and its implications are further discussed here.

Hook installation

The hook is written in C++ and it will be compiled when building Sarus without the need of additional dependen-
cies. Sarus’s installation scripts will also automatically install the hook in the $CMAKE_INSTALL_PREFIX/bin
directory. In short, no specific action is required to install the MPI hook.

Sarus configuration

The program is meant to be run as a prestart hook and does not accept arguments, but its actions are controlled
through a few environment variables:

• LDCONFIG_PATH: Absolute path to a trusted ldconfig program on the host.

• MPI_LIBS: Colon separated list of full paths to the host’s libraries that will substitute the container’s libraries.
The ABI compatibility check is performed by comparing the version numbers specified in the libraries’ file
names as follows:

– The major numbers (first from the left) must be equal.

– The host’s minor number (second from the left) must be greater or equal to the container’s minor number.
In case the minor number from the container is greater than the host’s minor number, the hook will print a
warning but will proceed in the attempt to let the container application run.

– If the host’s library name does not contain the version numbers or contains only the major version number,
the missing numbers are assumed to be zero.

This compatibility check is in agreement with the MPICH ABI version number schema.

• MPI_DEPENDENCY_LIBS: Colon separated list of absolute paths to libraries that are dependencies of the
MPI_LIBS. These libraries are always bind mounted in the container under /usr/lib.

• BIND_MOUNTS: Colon separated list of absolute paths to generic files or directories that are required for the
correct functionality of the host MPI implementation (e.g. specific device files). These resources will be bind
mounted inside the container with the same path they have on the host.

The following is an example of OCI hook JSON configuration file enabling the MPI hook:

{
"version": "1.0.0",
"hook": {

"path": "/opt/sarus/bin/mpi_hook",
"env": [

"LDCONFIG_PATH=/sbin/ldconfig",
"MPI_LIBS=/usr/lib64/mvapich2-2.2/lib/libmpi.so.12.0.5:/usr/lib64/

→˓mvapich2-2.2/lib/libmpicxx.so.12.0.5:/usr/lib64/mvapich2-2.2/lib/libmpifort.so.12.0.
→˓5",

"MPI_DEPENDENCY_LIBS=",
"BIND_MOUNTS="

]
},
"when": {

"annotations": {
"^com.hooks.mpi.enabled$": "^true$"

}

(continues on next page)
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},
"stages": ["prestart"]

}

Sarus support at runtime

The annotation com.hooks.mpi.enabled=true is automatically generated by Sarus if the --mpi command
line option is passed to sarus run.

NVIDIA Container Toolkit

NVIDIA provides access to GPU devices and their driver stacks inside OCI containers through an OCI hook called
NVIDIA Container Toolkit, which acts as a driver for the nvidia-container-cli utility.

Dependencies

At least one NVIDIA GPU device and the NVIDIA CUDA Driver must be correctly installed and working in the host
system.

The Toolkit depends on the library and utility provided by the libnvidia-container project to carry out the low-level
actions of importing the GPU device and drivers inside the container. At the time of writing, the latest release of
libnvidia-container is version 1.2.0. The easiest way to install libnvidia-container is to build from source on a Docker-
enabled system and copy the binaries onto the system where Sarus is installed:

## ON SYSTEM WITH DOCKER ##

# Clone the repository
$ git clone https://github.com/NVIDIA/libnvidia-container.git
$ cd libnvidia-container
$ git checkout v1.2.0

# Build with Docker
# It is possible to build using containers based on Ubuntu (16.04/18.04),
# Debian (9/10), CentOS 7, OpenSUSE Leap 15.1 or Amazon Linux
$ make ubuntu18.04

# Packages and a tarfile will be available in the dist/<distribution>/<arch>
# directory
$ ls dist/ubuntu18.04/amd64

# Copy tarfile to Sarus system
$ rsync -a dist/ubuntu18.04/amd64/libnvidia-container_1.2.0_amd64.tar.xz <user>@
→˓<target system with Sarus>

## ON TARGET SYSTEM ##

# Extract the archive and install the files
$ tar -xf libnvidia-container_1.2.0_amd64.tar.xz
$ cd libnvidia-container_1.2.0/usr/local/
$ sudo mkdir /usr/local/libnvidia-container_1.2.0
$ sudo cp -r * /usr/local/libnvidia-container_1.2.0
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Installation

At the time of writing, the latest revision of the NVIDIA Container Toolkit is version 1.2.1. NVIDIA does not provide
pre-built binaries for this software, so it is necessary to build from source.

To do so, an installation of the Go programming language is needed. System packages are available for major Linux
distributions, or you can follow the official documentation for manual installation.

For a regular installation, the default Go working directory is $HOME/go. Should you prefer a different location,
remember to set it as the $GOPATH in your environment.

You can now proceed to build the Toolkit from source:

$ git clone https://github.com/NVIDIA/nvidia-container-toolkit.git
$ cd nvidia-container-toolkit
$ git checkout v1.2.1
$ make binary

# Copy the toolkit binary to an installation directory
$ sudo cp ./nvidia-container-toolkit /opt/sarus/bin/nvidia-container-toolkit-1.2.1

To ensure correct functionality, the Toolkit also needs a TOML configuration file to be present on the system, and
will look for it in the default path /etc/nvidia-container-runtime/config.toml, unless instructed
otherwise. The configuration file is platform specific (for example, it tells the Toolkit where to find the system’s
ldconfig). NVIDIA provides basic flavors for Ubuntu, Debian, CentOS, OpenSUSE Leap and Amazon Linux:

# Install hook config.toml (e.g. for CentOS)
$ sudo mkdir /etc/nvidia-container-runtime/
$ sudo cp <NVIDIA Container Toolkit git repo>/config/config.toml.centos /etc/nvidia-
→˓container-runtime/config.toml

Sarus configuration

The NVIDIA Container Toolkit is meant to run as a prestart hook. It also expects to receive its own name/location
as the first program argument, and the string prestart as positional argument. Any other positional argument will
cause the Toolkit to return immediately without performing any action.

The hook environment also needs to grant visibility to the library and utility of libnvidia-container.

Below is an example of OCI hook JSON configuration file enabling the NVIDIA Container Toolkit. Notice that in
this example the -config=/path/to/config.toml flag is entered before the prestart positional argument
to point the Toolkit to a configuration file installed in a custom location. Such flag is not required if you installed the
TOML configuration file in the custom location as described in the previous section.

{
"version": "1.0.0",
"hook": {

"path": "/opt/sarus/bin/nvidia-container-toolkit",
"args": ["nvidia-container-toolkit", "-config=/opt/sarus/bin/config.toml",

→˓"prestart"],
"env": [

"PATH=/usr/local/libnvidia-container_1.2.0/bin",
"LD_LIBRARY_PATH=/usr/local/libnvidia-container_1.2.0/lib"

]
},
"when": {

(continues on next page)
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"always": true
},
"stages": ["prestart"]

}

Sarus support at runtime

The actions performed by the NVIDIA Container Toolkit hook are controlled via a set of specific environment vari-
ables. Most of these can (and should) come from the container images, or from the Environmental Transfer performed
by Sarus. Notably, the NVIDIA_VISIBLE_DEVICES variable defines which GPUs will be made accessible inside
the container by the Toolkit.

However, in an HPC scenario, the hardware resources should be assigned from a supervisory entity, such as a workload
manager. For example, the SLURM workload manager Generic Resource Scheduling (GRES) plugin selects which
GPU devices are assigned to a job by setting the CUDA_VISIBLE_DEVICES environment variable inside the job
process.

For this reason, when preparing a container Sarus will look for CUDA_VISIBLE_DEVICES in the host environment,
and modify accordingly both NVIDIA_VISIBLE_DEVICES and CUDA_VISIBLE_DEVICES in the container.
These modifications ensure that the host resource allocations are respected, while guaranteeing the correct operation
of CUDA applications inside the container, even in the case of partial or shuffled devices selection on multi-GPU
systems.

Native glibc hook

Sarus’s source code includes a hook able to inject glibc libraries from the host inside the container, overriding the glibc
of the container.

This is useful in case that we need to upgrade the container’s glibc to a newer version. For example, when we want to
inject a host’s library inside the container (e.g. MPI), but the host’s library relies on a newer glibc than the container’s
one.

When activated, the hook will enter the mount namespace of the container, search for dynamically-linkable glibc
libraries and replace them with functional equivalents bind-mounted from the host system.

In order for the replacements to work seamlessly, the hook does the following:

• Compare glibc versions of host and container. The container’s libraries are only replaced when they are older
than the host’s libraries.

• Check ABI compatibility between host and container glibc. Host and container glibc libraries must have the
same soname.

Hook installation

The hook is written in C++ and it will be compiled when building Sarus without the need of additional dependen-
cies. Sarus’s installation scripts will also automatically install the hook in the $CMAKE_INSTALL_PREFIX/bin
directory. In short, no specific action is required to install the glibc hook.
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Sarus configuration

The program is meant to be run as a prestart hook and does not accept arguments, but its actions are controlled
through a few environment variables:

• LDCONFIG_PATH: Absolute path to a trusted ldconfig program on the host.

• READELF_PATH: Absolute path to a trusted readelf program on the host.

• GLIBC_LIBS: Colon separated list of full paths to the host’s glibc libraries that will substitute the container’s
libraries.

The following is an example of OCI hook JSON configuration file enabling the glibc hook:

{
"version": "1.0.0",
"hook": {

"path": "/opt/sarus/bin/glibc_hook",
"env": [

"LDCONFIG_PATH=/sbin/ldconfig",
"READELF_PATH=/usr/bin/readelf",
"GLIBC_LIBS=/lib64/libSegFault.so:/lib64/librt.so.1:/lib64/libnss_dns.so.

→˓2:/lib64/libanl.so.1:/lib64/libresolv.so.2:/lib64/libnsl.so.1:/lib64/
→˓libBrokenLocale.so.1:/lib64/ld-linux-x86-64.so.2:/lib64/libnss_hesiod.so.2:/lib64/
→˓libutil.so.1:/lib64/libnss_files.so.2:/lib64/libnss_compat.so.2:/lib64/libnss_db.so.
→˓2:/lib64/libm.so.6:/lib64/libcrypt.so.1:/lib64/libc.so.6:/lib64/libpthread.so.0:/
→˓lib64/libdl.so.2:/lib64/libmvec.so.1:/lib64/libc.so.6:/lib64/libthread_db.so.1"

]
},
"when": {

"annotations": {
"^com.hooks.glibc.enabled$": "^true$"

}
},
"stages": ["prestart"]

}

Sarus support at runtime

The com.hooks.glibc.enabled=true annotation that enables the hook is automatically generated by Sarus if
the --glibc or --mpi command line options are passed to sarus run.

SSH hook

Sarus also includes the source code for a hook capable of enabling SSH connections inside containers. The SSH
hook is an executable binary that performs different ssh-related operations depending on the argument it receives from
the runtime. For the full details about the implementation and inner workings, please refer to the related developer
documentation.
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Hook installation

The hook is written in C++ and it will be compiled along with Sarus if the ENABLE_SSH=TRUE CMake option
has been used when configuring the build (the option is enabled by default). The Sarus installation scripts will also
automatically install the hook in the <CMAKE_INSTALL_PREFIX>/bin directory.

A custom SSH software (statically linked Dropbear) will also be built and installed in the
<CMAKE_INSTALL_PREFIX>/dropbear directory. This directory must satisfy the security requirements
for critical files and directories.

Sarus configuration

The SSH hook must be configured to run as a prestart hook. It expects to receive its own name/location as the
first argument, and the string start-ssh-daemon as positional argument. In addition, the following environment
variables must be defined:

• HOOK_BASE_DIR: Absolute base path to the directory where the hook will create and access the SSH keys.
The keys directory will be located in <HOOK_BASE_DIR>/<username>/.oci-hooks/ssh/keys.

• PASSWD_FILE: Absolute path to a password file (PASSWD(5)). The file is used by the hook to retrieve the
username of the user.

• DROPBEAR_DIR: Absolute path to the location of the custom SSH software.

• "SERVER_PORT: TCP port on which the SSH daemon will listen. This must be an unused port and is tipically
set to a value different than 22 in order to avoid clashes with an SSH daemon that could be running on the host.

The following is an example of OCI hook JSON configuration file enabling the SSH hook:

{
"version": "1.0.0",
"hook": {

"path": "/opt/sarus/bin/ssh_hook",
"env": [

"HOOK_BASE_DIR=/home",
"PASSWD_FILE=/opt/sarus/etc/passwd",
"DROPBEAR_DIR=/opt/sarus/dropbear",
"SERVER_PORT=15263"

],
"args": [

"ssh_hook",
"start-ssh-daemon"

]
},
"when": {

"annotations": {
"^com.hooks.ssh.enabled$": "^true$"

}
},
"stages": ["prestart"]

}
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Sarus support at runtime

The command sarus ssh-keygen will call the hook without creating a container, passing the appropriate argu-
ments to generate dedicated keys to be used by containers.

The com.hooks.ssh.enabled=true annotation that enables the hook is automatically generated by Sarus if the
--ssh command line option is passed to sarus run.

Slurm global sync hook

Sarus also includes the source code for a hook specifically targeting the Slurm Workload Manager. This hook synchro-
nizes the startup of containers launched through Slurm, ensuring that all Slurm nodes have spawned a container before
starting the user-requested application in any of them. This kind of synchronization is useful, for example, when
used in conjunction with the SSH hook: if the containers are not all available, some of them might try to establish
connections with containers that have yet to start, causing the whole job step execution to fail.

When activated, the hook will retrieve information about the current Slurm job step and node by reading three environ-
ment variables: SLURM_JOB_ID, SLURM_NTASKS and SLURM_PROCID. The hook will then create a job-specific
synchronization directory inside the Sarus local repository of the user. Inside the synchronization directory, two sub-
directories will be created: arrival and departure. In the arrival directory each hook from a Slurm task will
create a file with its Slurm process ID as part of the filename, then periodically check if files from all other Slurm tasks
are present in the directory. The check is performed every 0.1 seconds. When all processes have signaled their arrival
by creating a file, the hooks proceed to signal their departure by creating a file in the departure directory, and then
exit the hook program. The hook associated with the Slurm process ID 0 waits for all other hooks to depart and then
cleans up the synchronization directory.

The arrival/departure strategy has been implemented to prevent edge-case race conditions: for example, if the file from
the last arriving hook is detected and the cleanup started before the last arriving hook has checked for the presence
of all other files, this situation would result in the deadlock of the last arriving hook. Having all hooks signal their
departure before cleaning up the synchronization directory avoids this problem.

Hook installation

The hook is written in C++ and it will be compiled when building Sarus without the need of additional dependen-
cies. Sarus’s installation scripts will also automatically install the hook in the $CMAKE_INSTALL_PREFIX/bin
directory. In short, no specific action is required to install the Slurm global sync hook.

Sarus configuration

The program is meant to be run as a prestart hook and does not accept any argument. The following environment
variables must be defined:

• HOOK_BASE_DIR: Absolute base path to the directory where the hook will create and access the synchro-
nization files. The sync directory will be located in <HOOK_BASE_DIR>/<username>/.oci-hooks/
slurm-global-sync.

• PASSWD_FILE: Absolute path to a password file (PASSWD(5)). The file is used by the hook to retrieve the
username of the user.

The following is an example of OCI hook JSON configuration file enabling the Slurm global sync hook:
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{
"version": "1.0.0",
"hook": {

"path": "/opt/sarus/bin/slurm_global_sync_hook",
"env": [

"HOOK_BASE_DIR=/home",
"PASSWD_FILE=/opt/sarus/etc/passwd"

]
},
"when": {

"annotations": {
"^com.hooks.slurm-global-sync.enabled$": "^true$"

}
},
"stages": ["prestart"]

}

Sarus support at runtime

The com.hooks.slurm-global-sync.enabled=true annotation that enables the hook is automatically
generated by Sarus if the --ssh command line option is passed to sarus run to make sure that containers will not
attempt to ssh into other containers that have yet to start.

Timestamp hook

The OCI specifications do not define any requirement on exposing information about the inner workings of runtimes
and hooks to the user. This can make determining the startup overhead of a standard container runtime difficult.

Sarus bundles a hook which leaves a timestamp on a logfile, accompanied by a configurable message. Since the OCI
Runtime Specification mandates hooks to be executed in the order they are entered during configuration, interleaving
this hook between other hooks generates useful data to measure the time spent by each component.

The timestamp has the following format:

[<UNIX time in seconds.nanoseconds>] [<hostname>-<hook PID>] [hook] [INFO]
Timestamp hook: <optional configurable message>

The following is an actual timestamp example:

[1552438146.449463] [nid07641-16741] [hook] [INFO] Timestamp hook:
After-runtime

This hook does not alter the container in any way, and is primarily meant as a tool for developers and system admin-
istrators working with OCI hooks.
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Hook installation

The hook is written in C++ and it will be compiled when building Sarus without the need of additional dependen-
cies. Sarus’s installation scripts will also automatically install the hook in the $CMAKE_INSTALL_PREFIX/bin
directory. In short, no specific action is required to install the Timestamp hook.

Sarus configuration

The Timestamp hook can be configured to run at any of the container lifecycle phases supported for hook execution
(prestart, poststart, poststop), since it is not tied to the workings of other hooks or the container application.

The hook optionally supports the following environment variable:

• TIMESTAMP_HOOK_MESSAGE: String to display as part of the timestamp printed to the target file. This
variable is optional, and it is meant to differentiate between subsequent invocations of the timestamp hook for
the same container.

The following is an example of OCI hook JSON configuration file enabling the Timestamp hook:

{
"version": "1.0.0",
"hook": {

"path": "/opt/sarus/bin/timestamp_hook",
"env": [

"TIMESTAMP_HOOK_MESSAGE=After-runtime"
]

},
"when": {

"always": true
},
"stages": ["prestart"]

}

As mentioned above, the real value of the Timestamp hook lies in interleaving it between other hooks in order to have
a measurement of the elapsed time. For example, using other hooks described in this documentation and creating
multiple Timestamp hook JSON configuration files:

$ ls /opt/sarus/etc/hooks.d
00-timestamp-hook.json
01-glibc-hook.json
02-timestamp-hook.json
03-nvidia-container-toolkit.json
04-timestamp-hook.json
05-mpi-hook.json
06-timestamp-hook.json
07-ssh-hook.json
08-timestamp-hook.json
09-slurm-global-sync-hook.json
10-timestamp-hook.json

The previous example could produce an output in the logfile like the following:

[775589.671527655] [hostname-12385] [hook] [INFO] Timestamp hook: After-runtime
[775589.675871678] [hostname-12386] [hook] [INFO] Timestamp hook: After-glibc-hook
[775589.682727735] [hostname-12392] [hook] [INFO] Timestamp hook: After-NVIDIA-hook
[775589.685961371] [hostname-12393] [hook] [INFO] Timestamp hook: After-MPI-hook

(continues on next page)
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[775589.690460309] [hostname-12394] [hook] [INFO] Timestamp hook: After-SSH-hook
[775589.693946863] [hostname-12396] [hook] [INFO] Timestamp hook: After-SLURM-global-
→˓sync-hook

Sarus support at runtime

The hook is activated by setting the TIMESTAMP_HOOK_LOGFILE variable in the container environment to the
absolute path to the logfile where the hook has to print its timestamp. Note that the target logfile does not need to
exist in the container’s filesystem, since the OCI Runtime Specification mandates hooks to execute in the runtime
namespace. If the variable is not set, the hook exits without performing any action.

When launching jobs with many containers (e.g. for an MPI application), it is advisable to point the Timestamp hook
to a different file for each container, in order to avoid filesystem contention and obtain cleaner measurements. The
following example shows one way to achieve this in a batch script for the Slurm Workload Manager.

#!/usr/bin/env bash
#SBATCH --job-name="sarus"
#SBATCH --nodes=<NNODES>
#SBATCH --ntasks-per-node=<NTASKS_PER_NODE>
#SBATCH --output=job.out
#SBATCH --time=00:05:00

echo "SLURM_JOBID="$SLURM_JOBID

echo "START_TIME=`date +%s`"

srun bash -c 'file=<JOB_DIR>/out.procid_${SLURM_PROCID}; TIMESTAMP_HOOK_LOGFILE=$
→˓{file}.timestamp-hook sarus --verbose run --mpi <image> <application> &>${file}.
→˓sarus'

echo "END_TIME=`date +%s`"

The Timestamp hook does not require any direct support from the Sarus container engine, although it relies on the
environmental transfer performed by Sarus to propagate the TIMESTAMP_HOOK_LOGFILE variable from the host
into the container environment, allowing the hook to work as intended by the user.

1.5 User guides

1.5.1 User guide

Basic end-to-end user workflow

Steps to do on your workstation:

1. Build the container image using the Docker tool and Dockerfiles.

2. Push the Docker image into Docker Hub registry (https://hub.docker.com).

Steps to do on the HPC system:

3. Pull the Docker image from the Docker Hub registry using Sarus.

4. Run the image at scale with Sarus.
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An explanation of the different steps required to deploy a Docker image using Sarus follows.

1. Develop the Docker image

First, the user has to build a container image. This boils down to writing a Dockerfile that describes the container,
executing the Docker command line tool to build the image, and then running the container to test it. Below you
can find an overview of what the development process looks like. We provide a brief introduction to using Docker,
however, for a detailed explanation please refer to the Docker Get Started guide.

Let’s start with a simple example. Consider the following Dockerfile where we install Python on a Debian Jessie base
image:

FROM debian:jessie
RUN apt-get -y update && apt-get install -y python

Once that the user has written the Dockerfile, the container image can be built:

$ docker build -t hello-python .

The previous step will take the content of the Dockerfile and build our container image. The first entry, FROM
debian:jessie, will specify a base Linux distribution image as a starting point for our container (in this case,
Debian Jessie), the image of which Docker will try to fetch from its registry if it is not already locally available. The
second entry RUN apt-get -y update && apt-get install -y python will execute the command
that follows the RUN instruction, updating the container with the changes done to its software environment: in this
case, we are installing Python using the apt-get package manager.

Once the build step has finished, we can list the available container images using:

$ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
hello-python latest 2e57316387c6 3 minutes ago 224 MB

We can now spawn a container from the image we just built (tagged as hello-python), and run Python inside the
container (python --version), so as to verify the version of the installed interpreter:

$ docker run --rm hello-python python --version
Python 2.7.9

One of the conveniences of building containers with Docker is that this process can be carried out solely on the user’s
workstation/laptop, enabling quick iterations of building, modifying, and testing of containerized applications that can
then be easily deployed on a variety of systems, greatly improving user productivity.

Note: Reducing the size of the container image, besides saving disk space, also speeds up the process of importing it
into Sarus later on. The easiest ways to limit image size are cleaning the package manager cache after installations and
deleting source codes and other intermediate build artifacts when building software manually. For practical examples
and general good advice on writing Dockerfiles, please refer to the official Best practices for writing Dockerfiles.

A user can also access the container interactively through a shell, enabling quick testing of commands. This can be a
useful step for evaluating commands before adding them to the Dockerfile:

$ docker run --rm -it hello-python bash
root@c5fc1954b19d:/# python --version
Python 2.7.9
root@c5fc1954b19d:/#
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2. Push the Docker image to the Docker Hub

Once the image has been built and tested, you can log in to DockerHub (requires an account) and push it, so that it
becomes available from the cloud:

$ docker login
$ docker push <user name>/<repo name>:<image tag>

Note that in order for the push to succeed, the image has to be correctly tagged with the same <repository
name>/<image name>:<image tag> identifier you intend to push to. Images can be tagged at build-time,
supplying the -t option to docker build, or afterwards by using docker tag. In the case of our example:

$ docker tag hello-python <repo name>/hello-python:1.0

The image tag (the last part of the identifier after the colon) is optional. If absent, Docker will set the tag to latest
by default.

3. Pull the Docker image from Docker Hub

Now the image is stored in the Docker Hub and you can pull it into the HPC system using the sarus pull command
followed by the image identifier:

$ sarus pull <repo name>/hello-python:1.0

While performing the pull does not require specific privileges, it is generally advisable to run sarus pull on the
system’s compute nodes through the workload manager: compute nodes often have better hardware and, in some cases
like Cray XC systems, large RAM filesystems, which will greatly reduce the pull process time and will allow to pull
larger images.

Should you run into problems because the pulled image doesn’t fit in the default filesystem, you can specify an
alternative temporary directory with the --temp-dir option.

You can use sarus images to list the images available on the system:

$ sarus images
REPOSITORY TAG DIGEST CREATED SIZE
→˓ SERVER
<repo name>/hello-python 1.0 6bc9d2cd1831 2018-01-19T09:43:04 40.16MB
→˓ index.docker.io

4. Run the image at scale with Sarus

Once the image is available to Sarus we can run it at scale using the workload manager. For example, if using SLURM:

$ srun -N 1 sarus run <repo name>/hello-python:1.0 python --version
Python 2.7.9

As with Docker, containers can also be used through a terminal, enabling quick testing of commands:

$ srun -N 1 --pty sarus run -t debian bash
$ cat /etc/os-release
PRETTY_NAME="Debian GNU/Linux 9 (stretch)"
NAME="Debian GNU/Linux"
VERSION_ID="9"

(continues on next page)
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VERSION="9 (stretch)"
ID=debian
HOME_URL="https://www.debian.org/"
SUPPORT_URL="https://www.debian.org/support"
BUG_REPORT_URL="https://bugs.debian.org/"

$ exit

The --pty option to srun and the -t/--tty option to sarus run are needed to properly setup the pseudo-
terminals in order to achieve a familiar user experience.

You can tell the previous example was run inside a container by querying the specifications of your host system. For
example, the OS of Cray XC compute nodes is based on SLES and not Debian:

$ srun -N 1 cat /etc/os-release
NAME="SLES"
VERSION="12"
VERSION_ID="12"
PRETTY_NAME="SUSE Linux Enterprise Server 12"
ID="sles"
ANSI_COLOR="0;32"
CPE_NAME="cpe:/o:suse:sles:12"

Additional features

Pulling images from private or 3rd party registries

By default, Sarus tries to pull images from DockerHub public repositories. To perform a pull from a private repository,
use the --login option to the sarus pull command and enter your credentials:

$ srun -N 1 sarus pull --login <privateRepo>/<image>:<tag>
username :user
password :
...

To pull an image from a registry different from Docker Hub, enter the server address as part of the image identifier.
For example, to access the NVIDIA GPU Cloud:

$ srun -N 1 sarus pull --login nvcr.io/nvidia/k8s/cuda-sample:nbody
username :$oauthtoken
password :
...

To work with images not pulled from Docker Hub (including the removal detailed in a later section), you need to enter
the image descriptor (repository[:tag]) as displayed by the sarus images command in the first two columns:

$ sarus images
REPOSITORY TAG DIGEST CREATED
→˓SIZE SERVER
nvcr.io/nvidia/k8s/cuda-sample nbody 29e2298d9f71 2019-01-14T12:22:25 91.
→˓88MB nvcr.io

$ srun -N1 sarus run nvcr.io/nvidia/k8s/cuda-sample:nbody cat /usr/local/cuda/version.
→˓txt
CUDA Version 9.0.176
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Note: Sarus has been designed to be compatible with Docker Hub, including its specific authentication scheme.
To work with registries which adopt different authentication procedures under the hood (like the Google Container
Registry), it is advised to complement Sarus with software provided by the container community like Skopeo (https:
//github.com/containers/skopeo). Skopeo is a highly versatile tool to work with container registries.

As an example, to download a GCR image requiring authentication credentials into a tar file using the skopeo copy
command (https://github.com/containers/skopeo/blob/master/docs/skopeo-copy.1.md):

$ skopeo copy –src-creds=<user>:<password> docker://gcr.io/<image>:<tag> docker-archive:<path>.tar

Skopeo should be able to authenticate either with username/password or with access token (in this case enter
oauth2accesstoken as the username and the token as the password in the --src-creds option). More details
are available in the Skopeo documentation.

Once Skopeo has downloaded the image as a tar file, the image can be loaded into Sarus with the sarus load command.

Loading images from tar archives

If you do not have access to a remote Docker registry, or you’re uncomfortable with uploading your images to the
cloud in order to pull them, Sarus offers the possibility to load images from tar archives generated by docker save.

First, save an image to a tar archive using Docker on your workstation:

$ docker save --output debian.tar debian:jessie
$ ls -sh
total 124M
124M debian.tar

Then, transfer the archive to the HPC system and use the sarus load command, followed by the archive filename
and the descriptor you want to give to the Sarus image:

$ sarus images
REPOSITORY TAG DIGEST CREATED SIZE SERVER

$ srun sarus load ./debian.tar my_debian
> expand image layers ...
> extracting : /tmp/debian.tar/
→˓7e5c6402903b327fc62d1144f247c91c8e85c6f7b64903b8be289828285d502e/layer.tar
> make squashfs ...
> create metadata ...
# created: <user home>/.sarus/images/load/library/my_debian/latest.squashfs
# created: <user home>/.sarus/images/load/library/my_debian/latest.meta

$ sarus images
REPOSITORY TAG DIGEST CREATED SIZE
→˓ SERVER
load/library/my_debian latest 2fe79f06fa6d 2018-01-31T15:08:56 47.04MB
→˓ load

The image is now ready to use. Notice that the origin server for the image has been labeled load to indicate this
image has been loaded from an archive.

Similarly to sarus pull, we recommend to load tar archives from compute nodes. Should you run out of space
while expanding the image, sarus load also accepts the --temp-dir option to specify an alternative expansion
directory.
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As with images from 3rd party registries, to use or remove loaded images you need to enter the image descriptor
(repository[:tag]) as displayed by the sarus images command in the first two columns.

Removing images

To remove an image from Sarus’s local repository, use the sarus rmi command:

$ sarus images
REPOSITORY TAG DIGEST CREATED SIZE SERVER
library/debian latest 6bc9d2cd1831 2018-01-31T14:11:27 40.17MB index.
→˓docker.io

$ sarus rmi debian:latest
removed index.docker.io/library/debian/latest

$ sarus images
REPOSITORY TAG DIGEST CREATED SIZE SERVER

To remove images pulled from 3rd party registries or images loaded from local tar archives you need to enter the image
descriptor (repository[:tag]) as displayed by the sarus images command:

$ sarus images
REPOSITORY TAG DIGEST CREATED SIZE
→˓ SERVER
load/library/my_debian latest 2fe79f06fa6d 2018-01-31T15:08:56 47.04MB
→˓ load

$ sarus rmi load/library/my_debian
removed load/library/my_debian/latest

Accessing host directories from the container

System administrators can configure Sarus to automatically mount facilities like parallel filesystems into every con-
tainer. Refer to your site documentation or system administrator to know which resources have been enabled on a
specific system.

Environmental Transfer

All the environment variables defined in the host process environment will be transferred into the container; however,
any environment variables defined in the container image, e.g., Docker ENV-defined variables, will be sourced and
override those.

Mounting custom directories into the container

By default, Sarus creates the container filesystem environment from the image and host system as specified by the
system administrator. It is possible to request additional paths from the host environment to be mapped to some other
path within the container using the --mount option of the sarus run command:

$ srun -N 1 --pty sarus run --mount=type=bind,source=/path/to/my/data,destination=/
→˓data -t debian bash
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The previous command would cause /path/to/my/data on the host to be mounted as /datawithin the container.
This mount option can be specified multiple times, one for each mount to be performed. --mount accepts a comma-
separated list of <key>=<value> pairs as its argument, much alike the Docker option with the same name (for
reference, see the official Docker documentation on bind mounts). As with Docker, the order of the keys is not
significant. A detailed breakdown of the possible flags follows in the next subsections.

Mandatory flags

• type: represents the type of the mount. Currently, only bind (for bind-mounts) is supported.

• source (required): Absolute path accessible from the user on the host that will be mounted in the container.
Can alternatively be specified as src.

• destination: Absolute path to where the filesystem will be made available inside the container. If the
directory does not exist, it will be created. It is possible to overwrite other bind mounts already present in the
container, however, the system administrator retains the power to disallow user-requested mounts to any location
at his/her discretion. May alternatively be specified as dst or target.

Bind mounts

In addition to the mandatory flags, regular bind mounts can optionally add the following flag:

• readonly (optional): Causes the filesystem to be mounted as read-only. This flag takes no value.

The following example demonstrates the use of a custom read-only bind mount.

$ ls -l /input_data
drwxr-xr-x. 2 root root 57 Feb 7 10:49 ./
drwxr-xr-x. 23 root root 4096 Feb 7 10:49 ../
-rw-r--r--. 1 root root 1048576 Feb 7 10:49 data1.csv
-rw-r--r--. 1 root root 1048576 Feb 7 10:49 data2.csv
-rw-r--r--. 1 root root 1048576 Feb 7 10:49 data3.csv

$ echo "1,2,3,4,5" > data4.csv

$ srun -N 1 --pty sarus run --mount=type=bind,source=/input_data,destination=/input,
→˓readonly -t debian bash
$ ls -l /input
-rw-r--r--. 1 root 0 1048576 Feb 7 10:49 data1.csv
-rw-r--r--. 1 root 0 1048576 Feb 7 10:49 data2.csv
-rw-r--r--. 1 root 0 1048576 Feb 7 10:49 data3.csv
-rw-r--r--. 1 root 0 10 Feb 7 10:52 data4.csv

$ cat /input/data4.csv
1,2,3,4,5

$ touch /input/data5.csv
touch: cannot touch '/input/data5.csv': Read-only file system

$ exit

Note: Bind-mounting FUSE filesystems into Sarus containers

By default, all FUSE filesystems are accessible only by the user who mounted them; this restriction is enforced by
the kernel itself. Sarus is a privileged application setting up the container as the root user in order to perform some
specific actions.
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To allow Sarus to access a FUSE mount point on the host, in order to bind mount it into a container, use the FUSE
option allow_root when creating the mount point. For example, when creating an EncFS filesystem:

$ encfs -o allow_root --nocache $PWD/encfs.enc/ /tmp/encfs.dec/ $
sarus run -t --mount=type=bind,src=/tmp/encfs.dec,dst=/var/tmp/encfs
ubuntu ls -l /var/tmp

It is possible to pass allow_root if the option user_allow_other is defined in /etc/fuse.conf, as stated
in the FUSE manpage.

Image entrypoint and default arguments

Sarus fully supports image entrypoints and default arguments as defined by the OCI Image Specification.

The entrypoint of an image is a list of arguments that will be used as the command to execute when the container
starts; it is meant to create an image that will behave like an executable file.

The image default arguments will be passed to the entrypoint if no argument is provided on the commmand line when
launching a container. If the entrypoint is not present, the first default argument will be treated as the executable to
run.

When creating container images with Docker, the entrypoint and default arguments are set using the ENTRYPOINT
and CMD instructions respectively in the Dockerfile. For example, this file will generate an image printing arguments
to the terminal by default:

FROM debian:stretch

ENTRYPOINT ["/bin/echo"]
CMD ["Hello world"]

After building such image (we’ll arbitrarily call it echo) and importing it into Sarus, we can run it without passing
any argument:

$ srun sarus run <image repo>/echo
Hello world

Entering a command line argument will override the default arguments passed to the entrypoint:

$ srun sarus run <image repo>/echo Foobar
Foobar

The image entrypoint can be changed by providing a value to the --entrypoint option of sarus run. It is
important to note that when changing the entrypoint the default arguments get discarded as well:

$ srun sarus run --entrypoint=cat <image repo>/echo /etc/os-release
PRETTY_NAME="Debian GNU/Linux 9 (stretch)"
NAME="Debian GNU/Linux"
VERSION_ID="9"
VERSION="9 (stretch)"
ID=debian
HOME_URL="https://www.debian.org/"
SUPPORT_URL="https://www.debian.org/support"
BUG_REPORT_URL="https://bugs.debian.org/"

The entrypoint can be removed by passing an empty value to --entrypoint. This is useful, for example, for
inspecting and debugging containers:
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$ srun --pty sarus run --entrypoint "" -t <image repo>/echo bash
$ env | grep ^PATH
PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin

$ exit

Note: Using the “adjacent value” style to remove an image entrypoint (i.e. --entrypoint="") is not supported.
Please pass the empty string value separated by a whitespace.

Working directory

The working directory inside the container can be controlled using the -w/--workdir option of the sarus run
command:

$ srun -N 1 --pty sarus run --workdir=/path/to/workdir -t debian bash

If the path does not exist, it is created inside the container.

If the -w/--workdir option is not specified but the image defines a working directory, the container process will
start there. Otherwise, the process will start in the container’s root directory (/). Using image-defined working
directories can be useful, for example, for simplifying the command line when launching containers.

When creating images with Docker, the working directory is set using the WORKDIR instruction in the Dockerfile.

Adding an init process to the container

By default, within the container Sarus only executes the user-specified application, which is assigned PID 1 in the
container’s PID namespace. The PID 1 process has unique features in Linux: most notably, the process will ignore
signals by default and zombie processes will not be reaped inside the container (see [1] , [2] for further reference).

If you need to handle signals or reap zombie processes (which can be useful when executing several different processes
in long-running containers), you can use the --init option to run an init process inside the container:

$ srun -N 1 sarus run --init alpine:3.8 ps -o pid,comm
PID COMMAND

1 init
8 ps

Sarus uses tini as its default init process.

Warning: Some HPC applications may be subject to performance losses when run with an init process. Our
internal benchmarking tests with tini showed overheads of up to 2%.
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Verbosity levels and help messages

To run a command in verbose mode, enter the --verbose global option before the command:

$ srun sarus --verbose run debian:latest cat /etc/os-release

To run a command printing extensive details about internal workings, enter the --debug global option before the
command:

$ srun sarus --debug run debian:latest cat /etc/os-release

To print a general help message about Sarus, use sarus --help.

To print information about a command (e.g. command-specific options), use sarus help <command>:

$ sarus help run
Usage: sarus run [OPTIONS] REPOSITORY[:TAG] [COMMAND] [ARG...]

Run a command in a new container

Note: REPOSITORY[:TAG] has to be specified as
displayed by the "sarus images" command.

Options:
--centralized-repository Use centralized repository instead of the local one
-t [ --tty ] Allocate a pseudo-TTY in the container
--entrypoint arg Overwrite the default ENTRYPOINT of the image
--mount arg Mount custom directories into the container
-m [ --mpi ] Enable MPI support
--ssh Enable SSH in the container

Support for container customization through hooks

Sarus allows containers to be customized by other programs or scripts leveraging the interface defined by the Open
Container Initiative Runtime Specification for POSIX-platform hooks (OCI hooks for short). These customizations
are especially amenable to HPC use cases, where the dedicated hardware and highly-tuned software adopted by high-
performance systems are in contrast with the platform-agnostic nature of software containers. OCI hooks provide a
solution to open access to these resources inside containers.

The hooks that will be enabled on a given Sarus installation are configured by the system administrators. Please refer
to your site documentation or your system administrator to know which hooks are available in a specific system and
how to activate them.

Here we will illustrate a few cases of general interest for HPC from an end-user perspective.

Native MPI support (MPICH-based)

Sarus comes with a hook able to import native MPICH-based MPI implementations inside the container. This is useful
in case the host system features a vendor-specific or high-performance MPI stack based on MPICH (e.g. Intel MPI,
Cray MPT, MVAPICH) which is required to fully leverage a high-speed interconnect.

To take advantage of this feature, the MPI installed in the container (and dynamically linked to your application) needs
to be ABI-compatible with the MPI on the host system. Taking as an example the Piz Daint Cray XC50 supercomputer
at CSCS, to best meet the required ABI compatibility we recommend that the container application uses one of the
following MPI implementations:
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• MPICH v3.1.4 (Feburary 2015)

• MVAPICH2 2.2 (September 2016)

• Intel MPI Library 2017 Update 1

The following is an example Dockerfile to create a Debian image with MPICH 3.1.4:

FROM debian:jessie

RUN apt-get update && apt-get install -y \
build-essential \
wget \
--no-install-recommends \

&& rm -rf /var/lib/apt/lists/*

RUN wget -q http://www.mpich.org/static/downloads/3.1.4/mpich-3.1.4.tar.gz \
&& tar xf mpich-3.1.4.tar.gz \
&& cd mpich-3.1.4 \
&& ./configure --disable-fortran --enable-fast=all,O3 --prefix=/usr \
&& make -j$(nproc) \
&& make install \
&& ldconfig \
&& cd .. \
&& rm -rf mpich-3.1.4 \
&& rm mpich-3.1.4.tar.gz

Note: Applications that are statically linked to MPI libraries will not work with the native MPI support provided by
the hook.

Once the system administrator has configured the hook, containers with native MPI support can be launched by passing
the --mpi option to the sarus run command, e.g.:

$ srun -N 16 -n 16 sarus run --mpi <repo name>/<image name> <mpi_application>

NVIDIA GPU support

NVIDIA provides access to GPU devices and their driver stacks inside OCI containers through the NVIDIA Container
Toolkit (part of the NVIDIA Container Runtime project).

When Sarus is configured to use this hook, the GPU devices to be made available inside the container can be selected
by setting the CUDA_VISIBLE_DEVICES environment variable in the host system. Such action is often performed
automatically by the workload manager or other site-specific software (e.g. the SLURM workload manager sets
CUDA_VISIBLE_DEVICES when GPUs are requested via the Generic Resource Scheduling plugin). Be sure to
check the setup provided by your computing site.

The container image needs to include a CUDA runtime that is suitable for both the target container applications and
the available GPUs in the host system. One way to achieve this is by basing your image on one of the official Docker
images provided by NVIDIA, i.e. the Dockerfile should start with a line like this:

FROM nvidia/cuda:8.0

Note: To check all the available CUDA images provided by NVIDIA, visit https://hub.docker.com/r/nvidia/cuda/
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When developing GPU-accelerated images on your workstation, we recommend using nvidia-docker to run and test
containers using an NVIDIA GPU.

SSH connection within containers

Sarus also comes with a hook which enables support for SSH connections within containers.

When Sarus is configured to use this hook, you must first run the command sarus ssh-keygen to generate the
SSH keys that will be used by the SSH daemons and the SSH clients in the containers. It is sufficient to generate the
keys just once, as they are persistent between sessions.

It is then possible to execute a container passing the --ssh option to sarus run, e.g. sarus run --ssh
<image> <command>. Using the previously generated the SSH keys, the hook will instantiate an sshd and setup a
custom ssh binary inside each container created with the same command.

Within a container spawned with the --ssh option, it is possible to connect into other containers by simply issuing
the ssh command available in the default search PATH. E.g.:

ssh <hostname of other node>

The custom ssh binary will take care of using the proper keys and non-standard port in order to connect to the remote
container.

When the ssh program is called without a command argument, it will open a login shell into the remote container.
In this situation, the SSH hook attempts to reproduce the environment variables which were defined upon the launch
of the remote container. The aim is to replicate the experience of actually accessing a shell in the container as it was
created.

OpenMPI communication through SSH

The MPICH-based MPI hook described above does not support OpenMPI libraries. As an alternative, OpenMPI
programs can communicate through SSH connections created by the SSH hook.

To run an OpenMPI program using the SSH hook, we need to manually provide a list of hosts and explicitly launch
mpirun only on one node of the allocation. We can do so with the following commands:

salloc -C gpu -N4 -t5
srun hostname > $SCRATCH/hostfile
srun sarus run --ssh \

--mount=src=/users,dst=/users,type=bind \
--mount=src=$SCRATCH,dst=$SCRATCH,type=bind \
ethcscs/openmpi:3.1.3 \
bash -c 'if [ $SLURM_PROCID -eq 0 ]; then mpirun --hostfile $SCRATCH/hostfile -

→˓npernode 1 /openmpi-3.1.3/examples/hello_c; else sleep 10; fi'

Upon establishing a remote connection, the SSH hook provides a $PATH covering the most used default locations:
/usr/local/bin:/usr/local/sbin:/usr/bin:/usr/sbin:/bin:/sbin. If your OpenMPI installa-
tion uses a custom location, consider using an absolute path to mpirun and the --prefix option as advised in the
official OpenMPI FAQ.
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Glibc replacement

Sarus’s source code includes a hook able to inject glibc libraries from the host inside the container, overriding the glibc
of the container.

This is useful when injecting some host resources (e.g. MPI libraries) into the container and said resources depend on
a newer glibc than the container’s one.

The host glibc stack to be injected is configured by the system administrator.

If Sarus is configured to use this hook, the glibc replacement can be activated by passing the --glibc option to
sarus run. Since native MPI support is the most common occurrence of host resources injection, the hook is also
implicitly activated when using the --mpi option.

Even when the hook is configured and activated, the glibc libraries in the container will only be replaced if the
following conditions apply:

• the container’s libraries are older than the host’s libraries;

• host and container glibc libraries have the same soname and are ABI compatible.

Running MPI applications without the native MPI hook

The MPI replacement mechanism controlled by the --mpi option is not mandatory to run distributed applications in
Sarus containers. It is possible to run containers using the MPI implementation embedded in the image, foregoing the
performance of custom high-performance hardware.

This can be useful in a number of scenarios:

• the software stack in the container should not be altered in any way

• non-performance-critical testing

• impossibility to satisfy ABI compatibility for native hardware acceleration

Sarus can be launched as a normal MPI program, and the execution context will be propagated to the container
application:

mpiexec -n <number of ranks> sarus run <image> <MPI application>

The important aspect to consider is that the process management system from the host must be able to communicate
with the MPI libraries in the container.

MPICH-based MPI implementations by default use the Hydra process manager and the PMI-2 interface to communi-
cate between processes. OpenMPI by default uses the OpenRTE (ORTE) framework and the PMIx interface, but can
be configured to support PMI-2.

Note: Additional information about the support provided by PMIx for containers and cross-version use cases can be
found here: https://openpmix.github.io/support/faq/how-does-pmix-work-with-containers

As a general rule of thumb, corresponding MPI implementations (e.g. using an MPICH-compiled mpiexec on the
host to launch Sarus containers featuring MPICH libraries) should work fine together. As mentioned previously,
if an OpenMPI library in the container has been configured to support PMI, the container should also be able to
communicate with an MPICH-compiled mpiexec from the host.

The following is a minimal Dockerfile example of building OpenMPI 4.0.2 with PMI-2 support on Ubuntu 18.04:
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FROM ubuntu:18.04

RUN apt-get update && apt-get install -y \
build-essential \
ca-certificates \
automake \
autoconf \
libpmi2-0-dev \
wget \
--no-install-recommends \

&& rm -rf /var/lib/apt/lists/*

RUN wget https://download.open-mpi.org/release/open-mpi/v4.0/openmpi-4.0.2.tar.gz \
&& tar xf openmpi-4.0.2.tar.gz \
&& cd openmpi-4.0.2 \
&& ./configure --prefix=/usr --with-pmi=/usr/include/slurm-wlm --with-pmi-libdir=/

→˓usr/lib/x86_64-linux-gnu CFLAGS=-I/usr/include/slurm-wlm \
&& make -j$(nproc) \
&& make install \
&& ldconfig \
&& cd .. \
&& rm -rf openmpi-4.0.2.tar.gz openmpi-4.0.2

When running under the Slurm workload manager, the process management interface can be selected with the --mpi
option to srun. The following example shows how to run the OSU point-to-point latency test from the Sarus cookbook
on CSCS’ Piz Daint Cray XC50 system without native interconnect support:

$ srun -C gpu -N2 -t2 --mpi=pmi2 sarus run ethcscs/mpich:ub1804_cuda92_mpi314_osu ./
→˓osu_latency
###MPI-3.0
# OSU MPI Latency Test v5.6.1
# Size Latency (us)
0 6.82
1 6.80
2 6.80
4 6.75
8 6.79
16 6.86
32 6.82
64 6.82
128 6.85
256 6.87
512 6.92
1024 9.77
2048 10.75
4096 11.32
8192 12.17
16384 14.08
32768 17.20
65536 29.05
131072 57.25
262144 83.84
524288 139.52
1048576 249.09
2097152 467.83
4194304 881.02

Notice that an --mpi=pmi2 option was passed to srun but not to sarus run.
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1.5.2 ABI compatibility and its implications

The native MPICH hook injects host libraries into the container, effectively replacing the compatible MPI implemen-
tation provided by the container image. This is done to achieve optimal performance: while container images are
ideally infrastructure agnostic to maximize portability, the interconnect technologies found on HPC systems are often
proprietary, requiring vendor-specific MPI software to be used at their full potential, or in some cases just to access
the network hardware.

In order to allow the container applications to work seamlessly after the replacement, the container MPI libraries and
the host MPI libraries must have compatible application binary interfaces (ABI).

An ABI is an interface which defines interactions between software components at the machine code level, for example
between an application executable and a shared object library. It is conceptually opposed to an API (application
programming interface), which instead defines interactions at the source code level.

If two libraries implement the same ABI, applications can be dynamically linked to either of them and still work
seamlessly.

In 2013, the developers of several MPI implementations based on the MPICH library announced an initiative to
maintain ABI compatibility between their implementations. At the time of writing, the software adhering to such
collaboration are:

• MPICH v3.1 (Released Feburary 2014)

• Intel® MPI Library v5.0 (Released June 2014)

• Cray MPT v7.0.0 (Released June 2014)

• MVAPICH2 2.0 (Release June 2014)

• Parastation MPI 5.1.7-1 (Released December 2016)

• RIKEN MPI 1.0 (Released August 2016)

Applications linked to one of the above libraries can work with any other implementation on the list, assuming the
ABI versions of the libraries linked at compile time and linked at runtime are compatible.

The MPICH ABI Initiative establishes the naming convention for complying libraries. The ABI version of a binary
can be determined by the string of numbers trailing the filename. For example, in the case of MPICH v3.1.1, which
has ABI version 12.0.1:

$ ls -l /usr/local/lib
total 9356
lrwxrwxrwx. 1 root root 13 Mar 16 13:30 libfmpich.so -> libmpifort.so
-rw-r--r--. 1 root root 5262636 Mar 16 13:30 libmpi.a
-rwxr-xr-x. 1 root root 990 Mar 16 13:30 libmpi.la
lrwxrwxrwx. 1 root root 16 Mar 16 13:30 libmpi.so -> libmpi.so.12.0.1
lrwxrwxrwx. 1 root root 16 Mar 16 13:30 libmpi.so.12 -> libmpi.so.12.0.1
-rwxr-xr-x. 1 root root 2649152 Mar 16 13:30 libmpi.so.12.0.1
lrwxrwxrwx. 1 root root 9 Mar 16 13:30 libmpich.so -> libmpi.so
lrwxrwxrwx. 1 root root 12 Mar 16 13:30 libmpichcxx.so -> libmpicxx.so
lrwxrwxrwx. 1 root root 13 Mar 16 13:30 libmpichf90.so -> libmpifort.so
-rw-r--r--. 1 root root 305156 Mar 16 13:30 libmpicxx.a
-rwxr-xr-x. 1 root root 1036 Mar 16 13:30 libmpicxx.la
lrwxrwxrwx. 1 root root 19 Mar 16 13:30 libmpicxx.so -> libmpicxx.so.12.0.1
lrwxrwxrwx. 1 root root 19 Mar 16 13:30 libmpicxx.so.12 -> libmpicxx.so.12.0.1
-rwxr-xr-x. 1 root root 185336 Mar 16 13:30 libmpicxx.so.12.0.1
-rw-r--r--. 1 root root 789026 Mar 16 13:30 libmpifort.a
-rwxr-xr-x. 1 root root 1043 Mar 16 13:30 libmpifort.la
lrwxrwxrwx. 1 root root 20 Mar 16 13:30 libmpifort.so -> libmpifort.so.12.0.1
lrwxrwxrwx. 1 root root 20 Mar 16 13:30 libmpifort.so.12 -> libmpifort.so.12.0.1

(continues on next page)
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(continued from previous page)

-rwxr-xr-x. 1 root root 364832 Mar 16 13:30 libmpifort.so.12.0.1
lrwxrwxrwx. 1 root root 9 Mar 16 13:30 libmpl.so -> libmpi.so
lrwxrwxrwx. 1 root root 9 Mar 16 13:30 libopa.so -> libmpi.so
drwxr-xr-x. 2 root root 39 Mar 16 13:30 pkgconfig

The initiative also defines update rules for the version strings: assuming a starting version of libmpi.so.12.0.0,
updates to the library implementation which do not change the public interface would result in libmpi.so.12.0.1.
Conversely, the addition of new features, without altering existing interface, would result in libmpi.so.12.1.0.
Interface breaking changes would result in a bump to the first number in the string: libmpi.so.13.0.0.

Within the boundary of a compatible interface version, one could perform the following type of replacements:

• Forward replacement: replacing the library an application was originally linked to with a newer version (e.g.
12.0.x is replaced by 12.1.x). This is is safe, since the newer version maintains the interface of the older
one. An application can still successfully access the functions and symbols found at compilation time.

• Backward replacement: replacing the library an application was originally linked to with an older version
(e.g. 12.1.x is replaced by 12.0.x). This is NOT safe, since the new features/functions which resulted in
the minor version bump are not present in the older library. If an application tries to access functions which are
only present in the newer version, this will result in an application failure (crash).

Armed with this knowledge, let’s go full circle and return to our starting point. The native MPICH hook will mount
host MPI libraries over corresponding libraries into the container to enable transparent native performance. Performing
this action over a container image with an MPI implementation newer than the configured host one might prevent
container applications from running. For this reason, before performing the mounts the hook verifies the ABI string
compatibility between the involved libraries. If non-matching major version are detected, the hook will stop execution
and return an error. If non-matching minor versions are detected when performing a backward replacement, the hook
will print a warning but will proceed in the attempt to let the container application run.

The host MPI implementation to be injected is system-specific and is configured by the system administrator.

Important: Please refer to the documentation or contacts provided by your computing site to learn more about the
compatible MPI versions on a given system.

1.5.3 Creating custom Docker images with CUDA

The base images provided by NVIDIA in Docker Hub only offer flavors based on Ubuntu and CentOS. If you want to
build a CUDA-enabled image on a different distribution, we offer the following advice:

Installing the CUDA Toolkit

• Package manager installer: repository installers (to be used through the system package manager) are available
for Fedora, OpenSUSE, RHEL and SLES (and also for Ubuntu and CentOS, if you don’t want to use NVIDIA’s
images). For detailed installation instructions, refer to the official CUDA Toolkit Documentation (https://docs.
nvidia.com/cuda/cuda-installation-guide-linux/index.html#package-manager-installation).

Please note that installing the default package options (e.g. cuda or cuda-tookit) will add a significant
amount of resources to your image (more than 1GB). Significant size savings can be achieved by selectively
installing only the packages with the parts of the Toolkit that you need. Please consult your system package
manager documentation in order to list the available packages inside the CUDA repositories.

• Runfile install: some distributions are not covered by the CUDA package manager and have to perform the
installation through the standalone runfile installer. One such case is Debian, which is also used as base for sev-
eral official Docker Hub images (e.g. Python). For detailed installation instructions, refer to the official CUDA
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Toolkit Documentation (https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#runfile). We
advise to supply the --silent and --toolkit options to the installer, to avoid installing the CUDA drivers
as well.

The standalone installer will add a significant amount of resources to your image, including documentation and
SDK samples. If you are really determined to reduce the size of your image, you can selectively rm -rf the
parts of the Toolkit that you don’t need, but be careful about not deleting libraries and tools that may be used by
applications in the container!

Controlling the NVIDIA Container Runtime

The NVIDIA Container Runtime (at the heart of nvidia-docker v2) is controlled through several environment variables.
These can be part of the container image or be set by docker run with the -e, --env or --env-file options
(please refer to the official documentation for the full syntax of these flags). A brief description of the most useful
variables follows:

• NVIDIA_VISIBLE_DEVICES: This variable controls which GPUs will be made accessible inside the con-
tainer. The values can be a list of indexes (e.g. 0,1,2), all, or none. If the variable is empty or unset, the
runtime will behave as default Docker.

• NVIDIA_DRIVER_CAPABILITIES: This option controls which driver libraries and binaries will be mounted
inside the container. It accepts as values a comma-separated list of driver features (e.g. utility,compute)
or the string all (for all driver capabilities). An empty or unset variable will default to minimal driver capabil-
ties (utility).

• NVIDIA_REQUIRE_CUDA: A logical expression to define a constraint on the CUDA driver version required
by the container (e.g. "cuda>=8.0" will require a driver supporting the CUDA Toolkit version 8.0 and later).
Multiple constraints can be expressed in a single environment variable: space-separated constraints are ORed,
comma-separated constraints are ANDed.

A full list of the environment variables looked up by the NVIDIA Container Runtime and their possible values is
available here.

As an example, in order to work correctly with the NVIDIA runtime, an image including a CUDA 8.0 application
could feature these instructions in its Dockerfile:

ENV NVIDIA_VISIBLE_DEVICES all
ENV NVIDIA_DRIVER_CAPABILITIES compute,utility
ENV NVIDIA_REQUIRE_CUDA "cuda>=8.0"

Alternatively, the variables can be specified (or even overwritten) from the command line:

$ docker run --runtime=nvidia -e NVIDIA_VISIBLE_DEVICES=all -e NVIDIA_DRIVER_
→˓CAPABILITIES=compute,utility --rm nvidia/cuda nvidia-smi

The official nvidia/cuda images already include a set of these environment variables. This means that all the
Dockerfiles that do a FROM nvidia/cuda will automatically inherit them and thus will work seamlessly with the
NVIDIA Container Runtime.
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1.6 Developer documentation

1.6.1 Class diagram

The class diagram below illustrates the internal architecture of Sarus. Please note that here the goal is to provide an
overview of the system’s architecture and the class diagram is just a simplified representiation of the system: many
classes and details of minor importance where omitted.

1.6.2 Running unit and integration tests

Unit tests

In order to run Sarus unit tests, it is advised to disable the security checks in the sarus.json file.

Disabling security checks prevents some tests from failing because some files (e.g. artifacts to test JSON parsing and
validation) are not root-owned and located in root-owned directories. The unit tests for security checks individually
re-enable the functionality to reliably verify its effectiveness.

The unit tests are written using the CppUTest framework, which the build scripts are able to retrieve and compile
automatically.

The tests are run from the build directory with the help of CTest, the test driver program from the CMake suite. We
differentiate between normal tests and test that require root privileges (e.g. those performing filesystem mounts). The
latter are identified by the suffix AsRoot in the name of the test executable.

# Run normal unit tests
$ CTEST_OUTPUT_ON_FAILURE=1 ctest --exclude-regex 'AsRoot'

# Run 'AsRoot' unit tests
$ sudo CTEST_OUTPUT_ON_FAILURE=1 ctest --tests-regex 'AsRoot'

Generating coverage data

If the build was configured with the CMake toolchain file gcc-gcov.cmake, the unit tests executables automatically
generate gcov files with raw coverage data. We can process and summarize these data using gcov and the gcovr utility:

Note: To yield reliable results, it is advised to collect unit test coverage data only when the build has been performed
in “Debug” configuration.

# Assuming that we are in the project's root directory and Sarus was built in the
# 'build' subdirectory
root_dir=$(pwd)
build_dir=$(pwd)/build
mkdir ${build_dir}/gcov
cd ${build_dir}/gcov
gcov --preserve-paths $(find ${build_dir}/src -name "*.gcno" |grep -v test |tr '\n' '
→˓')
gcovr -r ${root_dir}/src -k -g --object-directory ${build_dir}/gcov
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Fig. 4: Sarus class diagram
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Integration tests

Integration tests use Python 3 and the packages indicated in the Requirements page. Sarus must be correctly installed
and configured on the system in order to successfully perform integration testing. Before running the tests, we need
to re-target the centralized repository to a location that is writable by the current user (this is not necessary if running
integration tests as root):

$ mkdir -p ~/sarus-centralized-repository
$ sudo sed -i -e 's@"centralizedRepositoryDir": *".*"@"centralizedRepositoryDir": "/
→˓home/docker/sarus-centralized-repository"@' /opt/sarus/etc/sarus.json

Note: Integration tests are not exposed to the risk of failing when runtime security checks are enabled, like unit tests
are. To test a configuration more similar to a production deployment, re-enable security checks in the sarus.json file.

We can run the tests from the parent directory of the related Python scripts:

$ cd <sarus project root dir>/CI/src
$ PYTHONPATH=$(pwd):$PYTHONPATH CMAKE_INSTALL_PREFIX=/opt/sarus/ pytest -v -m 'not
→˓asroot' integration_tests/
$ sudo PYTHONPATH=$(pwd):$PYTHONPATH CMAKE_INSTALL_PREFIX=/opt/sarus/ pytest -v -m
→˓asroot integration_tests/

1.6.3 SSH Hook

Introduction

This document is meant to be read by developers in order to understand how Sarus provides SSH within containers.

Overview of the user interface

First of all, the user needs to run the command sarus ssh-keygen. This command generates the SSH keys that
will be used by the SSH daemons as well as the SSH clients in the containers.

Then the user can execute a container passing the --ssh option, e.g. sarus run --ssh <image>
<command>. This will first check that the user previously generated the SSH keys, and then will instantiate an
SSH daemon per container and setup a custom ssh executable inside the containers.

Within a container spawned with the --ssh option, the user can ssh into other containers by simply issuing the ssh
command available in the default search PATH. E.g.

ssh <hostname of other node>

The custom ssh executable will take care of using the proper keys and non-standard port in order to connect to the
remote container.
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Configuration by the system administrator

The following is an example of OCI hook JSON configuration file enabling the SSH hook:

{
"version": "1.0.0",
"hook": {

"path": "/opt/sarus/bin/ssh_hook",
"env": [

"HOOK_BASE_DIR=/home",
"PASSWD_FILE=/opt/sarus/etc/passwd",
"DROPBEAR_DIR=/opt/sarus/dropbear",
"SERVER_PORT=15263"

],
"args": [

"ssh_hook",
"start-ssh-daemon"

]
},
"when": {

"annotations": {
"^com.hooks.ssh.enabled$": "^true$"

}
},
"stages": ["prestart"]

}

Architecture

Most of the ssh-related logic is encapsulated in the SSH hook. The SSH hook is an executable binary that performs
different ssh-related operations depending on the CLI command that receives as parameter from the container engine.

The nitty gritty

The custom SSH software

The SSH hook uses a custom statically-linked version of Dropbear. At build time, if the CMake’s param-
eter ENABLE_SSH=TRUE is specified, the custom Dropbear is built and installed under the Sarus’s installa-
tion directory. Dropbear is built according to the instructions provided in the <sarus source dir>/dep/
build_dropbear.sh script. Such script also creates a localoptions.h header, overriding some of the default
compile-time options of Dropbear.

How the SSH keys are generated

When the command sarus ssh-keygen is issued, the command object cli::CommandSshkeygen gets exe-
cuted which in turn executes the SSH hook with the keygen CLI argument.

The hook performs the following operations:

1. Read from the environment variables the hook base directory.

2. Read from the environment variables the location of the passwd file.

3. Get the username from the passwd file and use it to determine the user’s hook directory (where the SSH keys
are stored).
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4. Read from the environment variables the location of the custom SSH software.

5. Execute the program dropbearkey to generate two keys in the user’s hook directory, using the ECDSA
algorithm. One key (dropbear_ecdsa_host_key) will be used by the SSH daemon, the other key
(id_dropbear) will be used by the SSH client.

How the existance of the SSH keys is checked

When the command sarus run --ssh <image> <command> is issued, the command object
cli::CommandRun gets executed which in turn executes the SSH hook with the check-user-has-sshkeys
CLI argument.

The hook performs the following operations:

1. Read from the environment variables the hook base directory.

2. Read from the environment variables the location of the passwd file.

3. Get the username from the passwd file and use it to determine the user’s hook directory (where the SSH keys
are stored).

4. Check that the user’s hook directory contains the SSH keys.

How the SSH daemon and SSH client are setup in the container

When the command “sarus run –ssh <image> <command>” is issued, Sarus sets up the OCI bundle and executes runc.
Then runc executes the OCI prestart hooks specified in sarus.json. The system administrator should have specified the
SSH hook with the “start-ssh-daemon” CLI argument.

The hook performs the following operations:

1. Read from the environment variables the hook base directory.

2. Read from the environment variables the location of the passwd file.

3. Read from the environment variables the location of the custom SSH software.

4. Read from the environment variables the port number to be used by the SSH daemon.

5. Read from stdin the container’s state as defined in the OCI specification.

6. Enter the container’s mount namespaces in order to access the container’s OCI bundle.

7. Enter the container’s pid namespace in order to start the sshd process inside the container.

8. Read the user’s UID/GID from the OCI bundle’s config.json

9. Get the username from the passwd file supplied by step 2.

10. Determine the user’s hook directory (where the SSH keys are stored) using data from steps 1. and 9.

11. Determine the location of the SSH keys in the container. See Determining the location of the SSH keys inside
the container.

12. Copy the custom SSH software into the contaier (SSH daemon, SSH client).

13. Setup the location for SSH keys into the container. If the path from 11. does not exist, it is created. If the user
mounted their home dir from the host, future actions from the hook could alter the host’s home dir. For this
reason, the hook performs an overlay mount over the keys location. This allows the hook to copy the Dropbear
keys into the container without tampering with the user’s original ~/.ssh.

14. Copy the Dropbear SSH keys into the container.
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15. Patch the container’s /etc/passwd if it does not feature a user shell which exists inside the container. This
check is necessary since with Sarus the passwd file is copied from the host system.

16. Create a shell script exporting the environment from the OCI bundle. See Reproducing the remote environment
in a login shell

17. Create a shell script in /etc/profile.d. See Reproducing the remote environment in a login shell

18. Chroot to the container, drop privileges, start the SSH deamon inside the container.

19. Create a shell script /usr/bin/ssh which transparently uses the Dropbear SSH client (dbclient) and the
proper keys and port number to establish SSH sessions.

Determining the location of the SSH keys inside the container

Dropbear looks inside ~/.ssh``to find the client key, the ``authorized_keys and
known_hosts files. The location of the home directory is determined from the running user’s entry in the
container’s /etc/passwd file.

The SSH hook reads the container’s passwd file as well and extracts the location of the home directory from that file
to ensure the correct operation of Dropbear. At the moment of copying the SSH keys into the container, the ~/.ssh
path is created if it does not exist. This prevents possible issues with Sarus, which replaces the /etc/passwd of
the container (see point 3. of Root filesystem): such file might indicate a user home path which does not initially exist
inside the container.

The possibility for a working user to not have a sane home directory inside /etc/passwd has also to be taken into
account: if the home directory field is empty, for example, the SSH software will still log the user into / . Debian-based
distributions use /nonexistent for users which are not supposed to have a home dir. Red Hat and Alpine assign
the root path as home even to the nobody user. Dropbear is currently not able to handle these corner cases: if the
home field is empty, Dropbear will fail to find its key even if they are created under /.ssh. On the other hand, if the
passwd file specifies a /nonexistent home directory field, Dropbear will still look for /nonexistent/.ssh,
which is a location that is not meant to exist, even if the SSH hook could create it.

Because of the behavior described above, in case of empty or /nonexistent home directory field in /etc/
passwd, the SSH hook exits with an error.

Reproducing the remote environment in a login shell

When opening a login shell into a remote container, the SSH hook also attempts to reproduce an environment that is
as close as possible to the one defined in the OCI bundle of the remote container.

This feature is implemented through 2 actions which take place when the hook is executed by the OCI runtime, before
the container process is started:

1. A shell script exporting all the environment variables defined in the OCI bundle is created in /opt/oci-hooks/
dropbear/environment.

2. A shell script is created in /etc/profile.d/ssh-hook.sh. This script will source /opt/oci-hooks/
dropbear/environment (thus replicating the environment from the OCI bundle) if the SSH_CONNECTION
environment variable is defined:

#!/bin/sh
if [ \"$SSH_CONNECTION\" ]; then

. /opt/oci-hooks/dropbear/environment
fi
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Dropbear sets the SSH_CONNECTION variable upon connecting to a remote host. If the ssh program is called
without a command to execute on the remote, it will start a login shell. As it is custom, login shells will source
/etc/profile, which in turn will source every script under /etc/profile.d.

Printing debug messages from Dropbear

Dropbear gives the possibility to use the -v command line option on both the server and client programs (dropbear
and dbclient respectively) to print debug messages about its internal workings. The -v option is only available if
the DEBUG_TRACE symbol is defined as part of the compile-time options in localoptions.h:

/* Include verbose debug output, enabled with -v at runtime. */
#define DEBUG_TRACE 1

The <sarus source dir>/dep/build_dropbear.sh script defines DEBUG_TRACE, so in a container
launched using the SSH hook it is immediately possible to print debug messages by passing -v to the SSH client
wrapper script:

$ ssh -v <remote container host> <command>

To obtain debug messages from the Dropbear server, a possibility is to launch an container with an interactive shell,
kill the dropbear process started by the SSH hook and re-launch the server adding the -v option:

$ /opt/oci-hooks/dropbear/bin/dropbear -E -r <user home dir>/.ssh/dropbear_ecdsa_host_
→˓key -p <port number from the hook config> -v

Dropbear’s server and client programs can print even more detailed messages if the DROPBEAR_TRACE2 environment
variable is defined:

$ export DROPBEAR_TRACE2=1

1.7 Sarus Cookbook

This cookbook is a collection of documented use case examples of the Sarus container runtime for HPC. Each example
is accompanied by material and information sufficient to reproduce it. In this sense, the examples also serve as recipes
demonstrating how to build containers with features like MPI and CUDA, and how to leverage those features from
Sarus. The examples are ordered by increasing complexity, providing a smooth learning curve.

1.7.1 Test Setup

The examples and performance measurements reported in this document were carried out on Piz Daint, a hybrid Cray
XC50/XC40 system in production at the Swiss National Supercomputing Centre (CSCS) in Lugano, Switzerland. The
system compute nodes are connected by the Cray Aries interconnect under a Dragonfly topology, notably providing
users access to hybrid CPU-GPU nodes. Hybrid nodes are equipped with an Intel Xeon E5-2690v3 processor, 64 GB
of RAM, and a single NVIDIA Tesla P100 GPU with 16 GB of memory. The software environment on Piz Daint
at the time of writing is the Cray Linux Environment 6.0.UP07 (CLE 6.0) using Environment Modules to provide
access to compilers, tools, and applications. The default versions for the NVIDIA CUDA and MPI software stacks
are, respectively, CUDA version 9.1, and Cray MPT version 7.7.2.

We install and configure Sarus on Piz Daint to use the native MPI and NVIDIA Container Runtime hooks, and to
mount the container images from a Lustre parallel filesystem.
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Performance measurements

In tests comparing native and container performance numbers, each data point presents the average and standard
deviation of 50 runs, to produce statistically relevant results, unless otherwise noted. For a given application, all
repetitions at each node count for both native and container execution were performed on the same allocated set of
nodes.

1.7.2 CUDA N-body

A fast n-body simulation is included as part of the CUDA Software Development Kit samples. The CUDA n-body
sample code simulates the gravitational interaction and motion of a group of bodies. The code is written with CUDA
and C and can make efficient use of multiple GPUs to calculate all-pairs gravitational interactions. More details of the
implementation can be found in this article by Lars Nyland et al.: Fast N-Body Simulation with CUDA.

We use this sample code to show that Sarus is able to leverage the NVIDIA Container Runtime hook in order to
provide containers with native performance from NVIDIA GPUs present in the host system.

Test Case

For this test case, we run the code with 𝑛 = 200, 000 bodies using double-precision floating-point arithmetic on 1 Piz
Daint compute node, featuring a single Tesla P100 GPU.

Running the container

We run the container using the Slurm Workload Manager and Sarus:

srun -Cgpu -N1 -t1 \
sarus run ethcscs/cudasamples:9.2 \
/usr/local/cuda/samples/bin/x86_64/linux/release/nbody \
-benchmark -fp64 -numbodies=200000

A typical output will look like:

Run "nbody -benchmark [-numbodies=<numBodies>]" to measure performance.
-fullscreen (run n-body simulation in fullscreen mode)
-fp64 (use double precision floating point values for simulation)
-hostmem (stores simulation data in host memory)
-benchmark (run benchmark to measure performance)
-numbodies=<N> (number of bodies (>= 1) to run in simulation)
-device=<d> (where d=0,1,2.... for the CUDA device to use)
-numdevices=<i> (where i=(number of CUDA devices > 0) to use for simulation)
-compare (compares simulation results running once on the default

GPU and once on the CPU)
-cpu (run n-body simulation on the CPU)
-tipsy=<file.bin> (load a tipsy model file for simulation)

NOTE: The CUDA Samples are not meant for performance measurements.
Results may vary when GPU Boost is enabled.

> Windowed mode
> Simulation data stored in video memory
> Double precision floating point simulation
> 1 Devices used for simulation
GPU Device 0: "Tesla P100-PCIE-16GB" with compute capability 6.0

(continues on next page)
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(continued from previous page)

> Compute 6.0 CUDA device: [Tesla P100-PCIE-16GB]
Warning: "number of bodies" specified 200000 is not a multiple of 256.
Rounding up to the nearest multiple: 200192.
200192 bodies, total time for 10 iterations: 3927.009 ms
= 102.054 billion interactions per second
= 3061.631 double-precision GFLOP/s at 30 flops per interaction

Running the native Application

We compile and run the same code on Piz Daint using a similar Cuda Toolkit version (cudatoolkit/9.2).

Container image and Dockerfile

The container image ethcscs/cudasamples:9.2 (based on Nvidia cuda/9.2) used for this test case can be pulled from
CSCS DockerHub or be rebuilt with this Dockerfile:

1 FROM nvidia/cuda:9.2-devel
2

3 RUN apt-get update && apt-get install -y --no-install-recommends \
4 cuda-samples-$CUDA_PKG_VERSION && \
5 rm -rf /var/lib/apt/lists/*
6

7 RUN (cd /usr/local/cuda/samples/1_Utilities/bandwidthTest && make)
8 RUN (cd /usr/local/cuda/samples/1_Utilities/deviceQuery && make)
9 RUN (cd /usr/local/cuda/samples/1_Utilities/deviceQueryDrv && make)

10 RUN (cd /usr/local/cuda/samples/1_Utilities/p2pBandwidthLatencyTest && make)
11 RUN (cd /usr/local/cuda/samples/1_Utilities/topologyQuery && make)
12 RUN (cd /usr/local/cuda/samples/5_Simulations/nbody && make)
13

14 CMD ["/usr/local/cuda/samples/1_Utilities/deviceQuery/deviceQuery"]

Required OCI hooks

• NVIDIA Container Runtime hook

Benchmarking results

We report the gigaflops per second performance attained by the two applications in the following table:

Average Std. deviation
Native 3059.34 5.30
Container 3058.91 6.29

The results show that containers deployed with Sarus and the NVIDIA Container Runtime hook can achieve the same
performance of the natively built CUDA application, both in terms of average value and variability.
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1.7.3 OSU Micro benchmarks

The OSU Micro Benchmarks (OMB) are a widely used suite of benchmarks for measuring and evaluating the perfor-
mance of MPI operations for point-to-point, multi-pair, and collective communications. These benchmarks are often
used for comparing different MPI implementations and the underlying network interconnect.

We use OMB to show that Sarus is able to provide the same native MPI high performance to containerized applications
when using the native MPICH hook. As indicated in the documentation for the hook, the only conditions required are:

• The MPI installed in the container image must comply to the requirements of the MPICH ABI Compatibility
Initiative. ABI compatibility and its implications are further discussed here.

• The application in the container image must be dynamically linked with the MPI libraries.

Test cases

Latency

The osu_latency benchmark measures the min, max and the average latency of a ping-pong communication be-
tween a sender and a receiver where the sender sends a message and waits for the reply from the receiver. The messages
are sent repeatedly for a variety of data sizes in order to report the average one-way latency. This test allows us to
observe any possible overhead from enabling the MPI support provided by Sarus.

All-to-all

The osu_alltoall benchmark measures the min, max and the average latency of the MPI_Alltoall blocking col-
lective operation across N processes, for various message lengths, over a large number of iterations. In the default
version, this benchmark report the average latency for each message length up to 1MB. We run this benchmark from
a minimum of 2 nodes up to 128 nodes, increasing the node count in powers of two.

Running the container

We run the container using the Slurm Workload Manager and Sarus.

Latency

sarus pull ethcscs/mvapich:ub1804_cuda92_mpi22_osu
srun -C gpu -N2 -t2 \
sarus run --mpi ethcscs/mvapich:ub1804_cuda92_mpi22_osu \
/usr/local/libexec/osu-micro-benchmarks/mpi/pt2pt/osu_latency

A typical output looks like:

# OSU MPI Latency Test v5.3.2
# Size Latency (us)
0 1.11
1 1.11
2 1.09
4 1.09
8 1.09
16 1.10
32 1.09

(continues on next page)
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64 1.10
128 1.11
256 1.12
512 1.15
1024 1.39
2048 1.67
4096 2.27
8192 4.21
16384 5.12
32768 6.73
65536 10.07
131072 16.69
262144 29.96
524288 56.45
1048576 109.28
2097152 216.29
4194304 431.85

Since the Dockerfiles use the WORKDIR instruction to set a default working directory, we can use that to simplify the
terminal command:

srun -C gpu -N2 -t2 \
sarus run --mpi ethcscs/osu-mb:5.3.2-mpich3.1.4 \
./osu_latency

All-to-all

srun -C gpu -N2 -t2 \
sarus run --mpi ethcscs/osu-mb:5.3.2-mpich3.1.4 \
../collective/osu_alltoall

A typical outpout looks like:

# OSU MPI All-to-All Personalized Exchange Latency Test v5.3.2
# Size Avg Latency(us)
1 5.46
2 5.27
4 5.22
8 5.21
16 5.18
32 5.18
64 5.17
128 11.35
256 11.64
512 11.72
1024 12.03
2048 12.87
4096 14.52
8192 15.77
16384 19.78
32768 28.89
65536 49.38
131072 96.64
262144 183.23

(continues on next page)
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524288 363.35
1048576 733.93

Running the native application

We compile the OSU micro benchmark suite natively using the Cray Programming Environment (PrgEnv-cray) and
linking against the optimized Cray MPI (cray-mpich) libraries.

Container images and Dockerfiles

We built the OSU benchmarks on top of several images containing MPI, in order to demonstrate the effectiveness of
the MPI hook regardless of the ABI-compatible MPI implementation present in the images:

MPICH

The container image ethcscs/mpich:ub1804_cuda92_mpi314_osu (based on mpich/3.1.4) used for this
test case can be pulled from CSCS DockerHub or be rebuilt with this Dockerfile.

MVAPICH

The container image ethcscs/mvapich:ub1804_cuda92_mpi22_osu (based on mvapich/2.2) used for this
test case can be pulled from CSCS DockerHub or be rebuilt with this Dockerfile. On the Cray, the supported Cray
MPICH ABI is 12.0 (mvapich>2.2 requires ABI/12.1 hence is not currently supported).

OpenMPI

As OpenMPI is not part of the MPICH ABI Compatibility Initiative, sarus run --mpi with OpenMPI is not
supported. Documentation can be found on this dedicated page: OpenMPI with SSH launcher.

Intel MPI

Because the Intel MPI license limits general redistribution of the software, we do not share the Docker image
ethcscs/intelmpi used for this test case. Provided the Intel installation files (such as archive and license file)
are available locally on your computer, you could build your own image with this example Dockerfile.

Required OCI hooks

• Native MPI hook (MPICH-based)
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Benchmarking results

Latency

Consider now the following Figure that compares the average and standard deviation of the osu_latency test
results for the four tested configurations. It can be observed that Sarus with the native MPI hook allows containers
to transparently access the accelerated networking hardware on Piz Daint and achieve the same performance as the
natively built test.
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Fig. 5: Results of the OSU Latency benchmark for the native MPI and three different containers with ABI-compliant
MPI libraries. The MPI in the container is replaced at runtime by the native MPICH MPI hook used by Sarus.

All-to-all

We run the osu_alltoall benchmark only for two applications: native and container with MPICH 3.1.4. We
collect latency values for 1kB, 32kB, 65kB and 1MB message sizes, computing averages and standard deviation. The
results are displayed in the following Figure:

We observe that the results from the container are very close to the native results, for both average values and variabil-
ity, across the node counts and message sizes. The average value of the native benchmark for 1kB message size at 16
nodes is slightly higher than the one computed for the container benchmark.

It is worthy to note that the results of this benchmark are heavily influenced by the topology of the tested set of nodes,
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Fig. 6: Results of the OSU All-to-all benchmark for the native MPI and MPICH 3.1.4 container. The MPI in the
container is replaced at runtime by the native MPICH MPI hook used by Sarus.
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especially regarding their variabiliy. This means that other tests using the same node counts may achieve significantly
different results. It also implies that results at different node counts are only indicative and not directly relatable, since
we did not allocate the same set of nodes for all node counts.

1.7.4 NVIDIA GPUDirect RDMA

GPUDirect is a technology that enables direct RDMA to and from GPU memory. This means that multiple GPUs
can directly read and write CUDA host and device memory, without resorting to the use of host memory or the CPU,
resulting in significant data transfer performance improvements.

We will show here that Sarus is able to leverage the GPUDirect technology.

Test case

This sample C++ code performs an MPI_Allgather operation using CUDA device memory and GPUDirect. If the
operation is carried out successfully, the program prints a success message to standard output.

Running the container

Before running this code with Sarus, two environment variables must be set: MPICH_RDMA_ENABLED_CUDA and
LD_PRELOAD

MPICH_RDMA_ENABLED_CUDA: allows the MPI application to pass GPU
pointers directly to point-to-point and collective communication functions,
as well as blocking collective communication functions.

LD_PRELOAD: allows to load the specified cuda library from the
compute node before all others.

This can be done by passing a string command to bash:

srun -C gpu -N4 -t2 sarus run --mpi \
ethcscs/mpich:ub1804_cuda92_mpi314_gpudirect-all_gather
bash -c 'MPICH_RDMA_ENABLED_CUDA=1 LD_PRELOAD=/usr/lib/x86_64-linux-gnu/libcuda.

→˓so ./all_gather'

A successful output looks like:

Success!

Running the native application

export MPICH_RDMA_ENABLED_CUDA=1
srun -C gpu -N4 -t2 ./all_gather

A successful output looks like:

Success!
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Container image and Dockerfile

The container image (based on cuda/9.2 and mpich/3.1.4) used for this test case can be pulled from CSCS DockerHub
or be rebuilt with this Dockerfile:

1 # docker build -f Dockerfile -t \
2 # ethcscs/mpich:ub1804_cuda92_mpi314_gpudirect-all_gather .
3 FROM ethcscs/mpich:ub1804_cuda92_mpi314
4

5 COPY all_gather.cpp /opt/mpi_gpudirect/all_gather.cpp
6 WORKDIR /opt/mpi_gpudirect
7 RUN mpicxx -g all_gather.cpp -o all_gather -I/usr/local/cuda/include -L/usr/local/

→˓cuda/lib64 -lcudart

Required OCI hooks

• NVIDIA Container Runtime hook

• Native MPI hook (MPICH-based)

1.7.5 OpenMPI with SSH launcher

OpenMPI is an MPI implementation with widespread adoption and support throughout the HPC community, and is
featured in several official Docker images as well.

The substantial differences with MPICH-based MPI implementations make the native MPICH hook provided by Sarus
ineffective on container images using OpenMPI.

This example will showcase how to run an OpenMPI container application by using an SSH launcher and the SSH
Hook.

Test case

We use the “Hello world in C” program included with the OpenMPI codebase in the examples/hello_c.c file. We do
not measure performance with this test and we do not make comparisons with a native implementation.

The program code at the time of writing follows for reference:

/*
* Copyright (c) 2004-2006 The Trustees of Indiana University and Indiana

* University Research and Technology

* Corporation. All rights reserved.

* Copyright (c) 2006 Cisco Systems, Inc. All rights reserved.

*
* Sample MPI "hello world" application in C

*/

#include <stdio.h>
#include "mpi.h"

int main(int argc, char* argv[])
{

int rank, size, len;
char version[MPI_MAX_LIBRARY_VERSION_STRING];

(continues on next page)
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MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);
MPI_Get_library_version(version, &len);
printf("Hello, world, I am %d of %d, (%s, %d)\n",

rank, size, version, len);
MPI_Finalize();

return 0;
}

Container image and Dockerfile

We start from the official image for Debian 8 “Jessie”, install the required build tools, OpenMPI 3.1.3, and compile
the example code using the MPI compiler.

FROM debian:jessie

RUN apt-get update \
&& apt-get install -y ca-certificates \

file \
g++ \
gcc \
gfortran \
make \
gdb \
strace \
realpath \
wget \
--no-install-recommends

RUN wget -q https://download.open-mpi.org/release/open-mpi/v3.1/openmpi-3.1.3.tar.gz \
&& tar xf openmpi-3.1.3.tar.gz \
&& cd openmpi-3.1.3 \
&& ./configure --with-slurm=no --prefix=/usr/local \
&& make all install

#./configure --with-slurm=no --prefix=/usr/local

RUN ldconfig
RUN cd /openmpi-3.1.3/examples && mpicc hello_c.c -o hello_c
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Used OCI hooks

• SSH hook

• SLURM global sync hook

Running the container

To run an OpenMPI program using the SSH hook, we need to manually provide a list of hosts and explicitly launch
mpirun only on one node of the allocation. We can do so with the following commands:

salloc -C gpu -N4 -t5
sarus ssh-keygen
srun hostname > $SCRATCH/hostfile
srun sarus run --ssh \

--mount=src=$SCRATCH,dst=$SCRATCH,type=bind \
ethcscs/openmpi:3.1.3 \
bash -c 'if [ $SLURM_PROCID -eq 0 ]; then mpirun --hostfile $SCRATCH/hostfile -

→˓npernode 1 /openmpi-3.1.3/examples/hello_c; else sleep infinity; fi'

Warning: Permanently added '[nid02182]:15263,[148.187.40.151]:15263' (RSA) to the
→˓list of known hosts.
Warning: Permanently added '[nid02180]:15263,[148.187.40.149]:15263' (RSA) to the
→˓list of known hosts.
Warning: Permanently added '[nid02181]:15263,[148.187.40.150]:15263' (RSA) to the
→˓list of known hosts.
Hello, world, I am 0 of 4, (Open MPI v3.1.3, package: Open MPI root@74cce493748b
→˓Distribution, ident: 3.1.3, repo rev: v3.1.3, Oct 29, 2018, 112)
Hello, world, I am 3 of 4, (Open MPI v3.1.3, package: Open MPI root@74cce493748b
→˓Distribution, ident: 3.1.3, repo rev: v3.1.3, Oct 29, 2018, 112)
Hello, world, I am 2 of 4, (Open MPI v3.1.3, package: Open MPI root@74cce493748b
→˓Distribution, ident: 3.1.3, repo rev: v3.1.3, Oct 29, 2018, 112)
Hello, world, I am 1 of 4, (Open MPI v3.1.3, package: Open MPI root@74cce493748b
→˓Distribution, ident: 3.1.3, repo rev: v3.1.3, Oct 29, 2018, 112)

1.7.6 GROMACS

GROMACS is a molecular dynamics package with an extensive array of modeling, simulation and analysis capabil-
ities. While primarily developed for the simulation of biochemical molecules, its broad adoption includes reaserch
fields such as non-biological chemistry, metadynamics and mesoscale physics. One of the key aspects characterizing
GROMACS is the strong focus on high performance and resource efficiency, making use of state-of-the-art algorithms
and optimized low-level programming techniques for CPUs and GPUs.

Test case

As test case, we select the 3M atom system from the HECBioSim benchmark suite for Molecular Dynamics:

A pair of hEGFR tetramers of 1IVO and 1NQL:

* Total number of atoms = 2,997,924

* Protein atoms = 86,996 Lipid atoms = 867,784 Water atoms = 2,041,230 Ions =
→˓1,914

The simulation is carried out using single precision, 1 MPI process per node and 12 OpenMP threads per MPI process.
We measured runtimes for 4, 8, 16, 32 and 64 compute nodes. The input file to download for the test case is 3000k-
atoms/benchmark.tpr.
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Running the container

Assuming that the benchmark.tpr input data is present in a directory which Sarus is configured to automatically
mount inside the container ( here referred by the arbitrary variable $INPUT ), we can run the container on 16 nodes
as follows:

srun -C gpu -N16 srun sarus run --mpi \
ethcscs/gromacs:2018.3-cuda9.2_mpich3.1.4 \
/usr/local/gromacs/bin/mdrun_mpi -s ${INPUT}/benchmark.tpr -ntomp 12

A typical output will look like:

:-) GROMACS - mdrun_mpi, 2018.3 (-:
...
Using 4 MPI processes
Using 12 OpenMP threads per MPI process

On host nid00001 1 GPU auto-selected for this run.
Mapping of GPU IDs to the 1 GPU task in the 1 rank on this node: PP:0
NOTE: DLB will not turn on during the first phase of PME tuning
starting mdrun 'Her1-Her1'
10000 steps, 20.0 ps.

Core t (s) Wall t (s) (%)
Time: 20878.970 434.979 4800.0

(ns/day) (hour/ns)
Performance: 3.973 6.041

GROMACS reminds you: "Shake Yourself" (YES)

If the system administrator did not configure Sarus to mount the input data location during container setup, we can use
the --mount option:

srun -C gpu -N16 sarus run --mpi \
--mount=type=bind,src=<path-to-input-directory>,dst=/gromacs-data \
ethcscs/gromacs:2018.3-cuda9.2_mpich3.1.4 \
/usr/local/gromacs/bin/mdrun_mpi -s /gromacs-data/benchmark.tpr -ntomp 12

Running the native application

CSCS provides and supports GROMACS on Piz Daint. This documentation page gives more details on how to run
GROMACS as a native application. For this test case, the GROMACS/2018.3-CrayGNU-18.08-cuda-9.1
modulefile was loaded.

Container image and Dockerfile

The container image ethcscs/gromacs:2018.3-cuda9.2_mpich3.1.4 (based on cuda/9.2 and mpich/3.1)
used for this test case can be pulled from CSCS DockerHub or be rebuilt with this Dockerfile:

1 #!/bin/sh
2 FROM ethcscs/mpich:ub1804_cuda92_mpi314
3

4 ## Uncomment the following lines if you want to build mpi yourself:
5 ## RUN apt-get update \

(continues on next page)
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6 ## && apt-get install -y --no-install-recommends \
7 ## wget \
8 ## gfortran \
9 ## zlib1g-dev \

10 ## libopenblas-dev \
11 ## && rm -rf /var/lib/apt/lists/*
12 ##
13 ## # Install MPICH
14 ## RUN wget -q http://www.mpich.org/static/downloads/3.1.4/mpich-3.1.4.tar.gz \
15 ## && tar xf mpich-3.1.4.tar.gz \
16 ## && cd mpich-3.1.4 \
17 ## && ./configure --disable-fortran --enable-fast=all,O3 --prefix=/usr \
18 ## && make -j$(nproc) \
19 ## && make install \
20 ## && ldconfig
21

22 # Install CMake (apt installs cmake/3.10.2, we want a more recent version)
23 RUN mkdir /usr/local/cmake \
24 && cd /usr/local/cmake \
25 && wget -q https://cmake.org/files/v3.12/cmake-3.12.4-Linux-x86_64.tar.gz \
26 && tar -xzf cmake-3.12.4-Linux-x86_64.tar.gz \
27 && mv cmake-3.12.4-Linux-x86_64 3.12.4 \
28 && rm cmake-3.12.4-Linux-x86_64.tar.gz \
29 && cd /
30

31 ENV PATH=/usr/local/cmake/3.12.4/bin/:${PATH}
32

33 # Install GROMACS (apt install gromacs/2018.1, we want a more recent version)
34 RUN wget -q http://ftp.gromacs.org/pub/gromacs/gromacs-2018.3.tar.gz \
35 && tar xf gromacs-2018.3.tar.gz \
36 && cd gromacs-2018.3 \
37 && mkdir build && cd build \
38 && cmake -DCMAKE_BUILD_TYPE=Release \
39 -DGMX_BUILD_OWN_FFTW=ON -DREGRESSIONTEST_DOWNLOAD=ON \
40 -DGMX_MPI=on -DGMX_GPU=on -DGMX_SIMD=AVX2_256 \
41 -DGMX_BUILD_MDRUN_ONLY=on \
42 .. \
43 && make -j6 \
44 && make check \
45 && make install \
46 && cd ../.. \
47 && rm -fr gromacs-2018.3*

Required OCI hooks

• NVIDIA Container Runtime hook

• Native MPI hook (MPICH-based)
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Results

We measure wall clock time (in seconds) and performance (in ns/day) as reported by the application logs. The speedup
values are computed using the wall clock time averages for each data point, taking the native execution time at 4 nodes
as baseline. The results of our experiments are illustrated in the following figure:
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Fig. 7: Comparison of wall clock execution time, performance, and speedup between native and Sarus-deployed
container versions of GROMACS on Piz Daint.

We observe the container application being up to 6% faster than the native implementation, with a small but consistent
performance advantage and comparable standard deviations across the different node counts.

1.7.7 TensorFlow with Horovod

TensorFlow is a software framework providing an API to express numerical computations using data flow graphs. It
also provides an implementation to run those computations on a broad array of platforms, from mobile devices to
large systems with heterogeneous environments. While usable in a variety of scientific domains, it is mainly intended
for the development of machine-learning (ML) models, with a focus on deep neural networks. The development of
TensorFlow was started internally at Google Inc., and the software was released as open source in November 2015.

Horovod is a framework developed by Uber Technologies Inc. to perform distributed training of deep neural networks
on top of another ML framework, like TensorFlow, Keras, or PyTorch. Notably, it allows to replace TensorFlow’s
own parameter server architecture for distributed training with communications based on an MPI model, leveraging
ring-allreduce algorithms for improved usability and performance.

Horovod 0.15.1 with CUDA 9.x

As test case, we select the tf_cnn_benchmark scripts from the Tensorflow project for benchmarking convolutional
neural networks. We use a ResNet-50 model with a batch size of 64 and the synthetic image data which the benchmark
scripts are able to generate autonomously. We performed runs from a minimum of 2 nodes up to 128 nodes, increasing
the node count in powers of two.
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Running the container

Assuming that the tensorflow-benchmark code is present in a directory which Sarus is configured to automatically
mount inside the container (here referred by the arbitrary variable $INPUT), we can run the container application as
follows:

srun -C gpu -N4 -t5 sarus run --mpi \
ethcscs/horovod:0.15.1-tf1.7.0-cuda9.0-mpich3.1.4-no-nccl \
python ${INPUT}/tensorflow-benchmarks/scripts/tf_cnn_benchmarks/tf_cnn_benchmarks.

→˓py \
--model resnet50 --batch_size 64 --variable_update horovod

If the system administrator did not configure Sarus to mount the input data location during container setup, we can use
the --mount option:

srun -C gpu -N4 -t5 sarus run --mpi \
--mount=type=bind,src=<path-to-parent-directory>/tensorflow-benchmarks/scripts/,

→˓dst=/tf-scripts \
ethcscs/horovod:0.15.1-tf1.7.0-cuda9.0-mpich3.1.4-no-nccl \
python /tf-scripts/tf_cnn_benchmarks/tf_cnn_benchmarks.py \
--model resnet50 --batch_size 64 --variable_update horovod

Native application

For the native implementation, we use TensorFlow 1.7.0, built using Cray Python 3.6, the Python extensions provided
by the Cray Programming Environment 18.08, CUDA 9.1 and cuDNN 7.1.4. These installations are performed by
CSCS staff and are available on Piz Daint through environment modules. We complete the software stack by creat-
ing a virtual environment with Cray Python 3.6 and installing Horovod 0.15.1 through the pip utility. The virtual
environment is automatically populated with system-installed packages from the loaded environment modules.

Container image and Dockerfile

We start from the reference Dockerfile provided by Horovod for version 0.15.1 and modify it to use Python 3.5,
TensorFlow 1.7.0, CUDA 9.0, cuDNN 7.0.5. These specific versions of CUDA and cuDNN are required because they
are the ones against which the version of TensorFlow available through pip has been built. We also replace OpenMPI
with MPICH 3.1.4 and remove the installation of OpenSSH, as the containers will be able to communicate between
them thanks to Slurm and the native MPI hook. Finally, we instruct Horovod not to use NVIDIA’s NCCL library for
any MPI operation, because NCCL is not available natively on Piz Daint. The final Dockerfile is the following:

FROM nvidia/cuda:9.0-devel-ubuntu16.04

# TensorFlow version is tightly coupled to CUDA and cuDNN so it should be selected
→˓carefully
ENV HOROVOD_VERSION=0.15.1
ENV TENSORFLOW_VERSION=1.7.0
ENV PYTORCH_VERSION=0.4.1
ENV CUDNN_VERSION=7.0.5.15-1+cuda9.0

# NCCL_VERSION is set by NVIDIA parent image to "2.3.7"
ENV NCCL_VERSION=2.3.7-1+cuda9.0

# Python 2.7 or 3.5 is supported by Ubuntu Xenial out of the box
ARG python=3.5

(continues on next page)
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ENV PYTHON_VERSION=${python}

RUN apt-get update && apt-get install -y --no-install-recommends \
build-essential \
cmake \
git \
curl \
vim \
wget \
ca-certificates \
libcudnn7=${CUDNN_VERSION} \
libnccl2=${NCCL_VERSION} \
libnccl-dev=${NCCL_VERSION} \
libjpeg-dev \
libpng-dev \
python${PYTHON_VERSION} \
python${PYTHON_VERSION}-dev

RUN ln -s /usr/bin/python${PYTHON_VERSION} /usr/bin/python

RUN curl -O https://bootstrap.pypa.io/get-pip.py && \
python get-pip.py && \
rm get-pip.py

# Install TensorFlow, Keras and PyTorch
RUN pip install tensorflow-gpu==${TENSORFLOW_VERSION} keras h5py torch==${PYTORCH_
→˓VERSION} torchvision

# Install MPICH 3.1.4
RUN cd /tmp \

&& wget -q http://www.mpich.org/static/downloads/3.1.4/mpich-3.1.4.tar.gz \
&& tar xf mpich-3.1.4.tar.gz \
&& cd mpich-3.1.4 \
&& ./configure --disable-fortran --enable-fast=all,O3 --prefix=/usr \
&& make -j$(nproc) \
&& make install \
&& ldconfig \
&& cd .. \
&& rm -rf mpich-3.1.4 mpich-3.1.4.tar.gz \
&& cd /

# Install Horovod, temporarily using CUDA stubs
RUN ldconfig /usr/local/cuda-9.0/targets/x86_64-linux/lib/stubs && \

HOROVOD_WITH_TENSORFLOW=1 HOROVOD_WITH_PYTORCH=1 pip install --no-cache-dir
→˓horovod==${HOROVOD_VERSION} && \

ldconfig

# Set default NCCL parameters
RUN echo NCCL_DEBUG=INFO >> /etc/nccl.conf

# Download examples
RUN apt-get install -y --no-install-recommends subversion && \

svn checkout https://github.com/uber/horovod/trunk/examples && \
rm -rf /examples/.svn

WORKDIR "/examples"
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Used OCI hooks

• NVIDIA Container Runtime hook

• Native MPI hook (MPICH-based)

Results

We measure the performance in images/sec as reported by the application logs and compute speedup values using
the performance averages for each data point, taking the native performance at 2 nodes as baseline. The results are
showcased in the following Figure:
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Fig. 8: Comparison of performance and speedup between native and Sarus-deployed container versions of TensorFlow
with Horovod on Piz Daint.

We observe the container application closely matching the native installation when running on up to 16 nodes, with
performance differences and normalized standard deviations less than 0.5%. From 32 nodes upwards, the container
application shows a small performance advantage, up to 5% at 128 nodes, with both implementations maintaining
close standard deviation values.

Horovod 0.16.x with CUDA 10.0

In this test case, we select again the tf_cnn_benchmark scripts from the Tensorflow project but now we test all four
different models that the benchmark supports, namely the alexnet, inception3, resnet50 and vgg16. The batch size is
again 64 and for each of the models we use a node range of 1 to 12 nodes.

Running the container

If the tensorflow-benchmark code is present in a directory which Sarus is configured to automatically mount inside the
container (here referred by the arbitrary variable $INPUT), we can run the container application as follows:

srun -C gpu -N4 sarus run --mpi \
ethcscs/horovod:0.16.1-tf1.13.1-cuda10.0-mpich3.1.4-nccl \
python ${INPUT}/tensorflow-benchmarks/scripts/tf_cnn_benchmarks/tf_cnn_benchmarks.

→˓py \
--model resnet50 --batch_size 64 --variable_update horovod
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Alternatively, the --mount option can be used:

srun -C gpu -N4 -t5 sarus run --mpi \
--mount=type=bind,src=<path-to-parent-directory>/tensorflow-benchmarks/scripts/,

→˓dst=/tf-scripts \
ethcscs/horovod:0.16.1-tf1.13.1-cuda10.0-mpich3.1.4-nccl \
python /tf-scripts/tf_cnn_benchmarks/tf_cnn_benchmarks.py \
--model resnet50 --batch_size 64 --variable_update horovod

The above commands are using the resnet50model. Using the --model option it is possible to run the benchmarks
with the other models as well.

Native application

For the native implementation, we use Horovod 0.16.0 with TensorFlow 1.12.0, built using Cray Python 3.6, the
Python extensions provided by the Cray Programming Environment 19.03, CUDA 10.0, cuDNN 7.5.6 and NCCL
2.4.2. These installations are performed by CSCS staff and are available on Piz Daint through environment modules.

Container image and Dockerfile

We start from the reference Dockerfile provided by Horovod for version 0.16.1 and modify it to use Python 3.5,
TensorFlow 1.13.1, CUDA 10.0, cuDNN 7.5.0. and NCCL 2.4.2. These specific versions of CUDA and cuDNN are
required because they are the ones against which the version of TensorFlow available through pip has been built. We
also replace OpenMPI with MPICH 3.1.4. and remove the installation of OpenSSH, as the containers will be able to
communicate thanks to Slurm and the native MPI hook Finally, we instruct Horovod to use NVIDIA’s NCCL library
for every MPI operation by adding the appropriate environment variables to the /etc/nccl.conf configuration file. The
resulting Dockerfile is the following:

FROM nvidia/cuda:10.0-devel-ubuntu16.04

# Define the software versions
ENV HOROVOD_VERSION=0.16.1 \

TENSORFLOW_VERSION=1.13.1 \
CUDNN_VERSION=7.5.0.56-1+cuda10.0 \
NCCL_VERSION=2.4.2-1+cuda10.0

# Python version
ARG python=3.5
ENV PYTHON_VERSION=${python}

# Install the necessary packages
RUN apt-get update && \

apt-get install -y --no-install-recommends \
cmake git curl vim wget ca-certificates \
libibverbs-dev \
libcudnn7=${CUDNN_VERSION} \
libnccl2=${NCCL_VERSION} \
libnccl-dev=${NCCL_VERSION} \
libjpeg-dev \
libpng-dev \
python${PYTHON_VERSION} python${PYTHON_VERSION}-dev

# Create symbolic link in order to make the installed python default
RUN ln -s /usr/bin/python${PYTHON_VERSION} /usr/bin/python

(continues on next page)
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# Download pip bootstrap script and install pip
RUN curl -O https://bootstrap.pypa.io/get-pip.py && \

python get-pip.py && \
r m get-pip.py

# Install Tensorflow, Keras and h5py
RUN pip install tensorflow-gpu==${TENSORFLOW_VERSION} keras h5py

# Install MPICH 3.1.4
RUN cd /tmp \

&& wget -q http://www.mpich.org/static/downloads/3.1.4/mpich-3.1.4.tar.gz \
&& tar xf mpich-3.1.4.tar.gz \
&& cd mpich-3.1.4 \
&& ./configure --disable-fortran --enable-fast=all,O3 --prefix=/usr \
&& make -j$(nproc) \
&& make install \
&& ldconfig \
&& cd .. \
&& rm -rf mpich-3.1.4 mpich-3.1.4.tar.gz \
&& cd /

# Install Horovod
RUN ldconfig /usr/local/cuda-10.0/targets/x86_64-linux/lib/stubs && \

HOROVOD_GPU_ALLREDUCE=NCCL HOROVOD_WITH_TENSORFLOW=1 pip install --no-cache-dir
→˓horovod==${HOROVOD_VERSION} && \
l dconfig

# NCCL configuration
RUN echo NCCL_DEBUG=INFO >> /etc/nccl.conf && \

echo NCCL_IB_HCA=ipogif0 >> /etc/nccl.conf && \
echo NCCL_IB_CUDA_SUPPORT=1 >> /etc/nccl.conf

Used OCI hooks

• NVIDIA Container Runtime hook

• Native MPI hook (MPICH-based)

Results

We measure the performance in images/sec as reported by the application logs by taking the mean value based on 5
different runs for each model and node number. The results are showcased in the following Figure:

We observe that performance of the container-based horovod-tensorflow is identical to the native one. An slight
increased performance of the containized solution is observed only for the alexnet model as the number of nodes
increases.
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Fig. 9: Comparison of performance between native and Sarus-deployed container versions of TensorFlow with
Horovod on Piz Daint.

1.7.8 PyFR

PyFR is a Python code for solving high-order computational fluid dynamics problems on unstructured grids. It lever-
ages symbolic manipulation and runtime code generation in order to run different high-performance backends on
a variety of hardware platforms. The characteristics of Flux Reconstruction make the method suitable for efficient
execution on modern streaming architectures, and PyFR has been demonstrated to achieve good portability1 and scal-
ability on some of the world’s most powerful HPC systems: most notably, a contribution based on PyFR was selected
as one of the finalists for the 2016 ACM Gordon Bell Prize2.

Test case

As test case, we select the 2D Euler vortex example bundled with the PyFR source code. We run the example on 4
nodes with GPU acceleration enabled. We do not measure performance with this test and we do not make comparisons
with a native implementation.

1 F.D. Witherden, B.C. Vermeire, P.E. Vincent,Heterogeneous computing on mixed unstructured grids with PyFR, Computers & Fluids, Volume
120, 2015, Pages 173-186, ISSN 0045-7930, https://doi.org/10.1016/j.compfluid.2015.07.016

2 P. Vincent, F. Witherden, B. Vermeire, J. S. Park and A. Iyer, “Towards Green Aviation with Python at Petascale”, SC ‘16: Proceedings of
the International Conference for High Performance Computing, Networking, Storage and Analysis, Salt Lake City, UT, 2016, pp. 1-11. https:
//doi.org/10.1109/SC.2016.1
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Running the container

We assume that a host scratchpad directory is configured to be mounted automatically inside the container by
Sarus, and is accessible at the path defined by $SCRATCH. Documentation can be found on this dedicated page:
Mounting custom directories into the container. For instance: --mount=type=bind,source=$SCRATCH,
destination=$SCRATCH

First step is to use an interactive container to prepare the simulation data:

# Launch interactive container
srun -C gpu -N1 -t10 --pty sarus run --tty \

ethcscs/pyfr:1.8.0-cuda9.2-ubuntu16.04 bash

then within the container, prepare the data:

1 #!/bin/bash
2

3 # From the container:
4 ## copy the example data to the scratch directory
5 mkdir $SCRATCH/pyfr/
6 cd PyFR-1.8.0/examples/
7 cp -r euler_vortex_2d/ $SCRATCH/pyfr/euler_vortex_2d
8

9 ## Convert mesh data to PyFR format
10 cd $SCRATCH/pyfr/euler_vortex_2d
11 pyfr import euler_vortex_2d.msh euler_vortex_2d.pyfrm
12

13 ## Partition the mesh and exit the container
14 pyfr partition 4 euler_vortex_2d.pyfrm .

and terminate the interactive session:

exit

Now that the data is ready, we can launch the multi-node simulation. Notice that we use the --pty option to srun
in order to visualize and update correctly PyFR’s progress bar (which we request with the -p option):

srun -C gpu -N4 -t1 --pty sarus run \
--mpi \
ethcscs/pyfr:1.8.0-cuda9.2-ubuntu16.04 \
pyfr run -b cuda -p \
$SCRATCH/pyfr/euler_vortex_2d/euler_vortex_2d.pyfrm \
$SCRATCH/pyfr/euler_vortex_2d/euler_vortex_2d.ini

A typical output will look like:

100.0% [===========================>] 100.00/100.00 daint: 00:00:29 rem: 00:00:00
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Container image and Dockerfile

The container image ethcscs/pyfr:1.8.0-cuda9.2-ubuntu16.04 (based on Nvidia cuda/9.2) used for this test case can be
pulled from CSCS DockerHub or be rebuilt with this Dockerfile:

1 FROM nvidia/cuda:9.2-devel-ubuntu16.04
2

3 LABEL com.pyfr.version="1.8.0"
4 LABEL com.python.version="3.5"
5

6 # Install system dependencies
7 # Metis is a library for mesh partitioning:
8 # http://glaros.dtc.umn.edu/gkhome/metis/metis/overview
9 RUN apt-get update && apt-get install -y \

10 unzip \
11 wget \
12 build-essential \
13 gfortran-5 \
14 strace \
15 realpath \
16 libopenblas-dev \
17 liblapack-dev \
18 python3-dev \
19 python3-setuptools \
20 python3-pip \
21 libhdf5-dev \
22 libmetis-dev \
23 --no-install-recommends && \
24 rm -rf /var/lib/apt/lists/*
25

26 # Install MPICH 3.1.4
27 RUN wget -q http://www.mpich.org/static/downloads/3.1.4/mpich-3.1.4.tar.gz && \
28 tar xvf mpich-3.1.4.tar.gz && \
29 cd mpich-3.1.4 && \
30 ./configure --disable-fortran --prefix=/usr && \
31 make -j$(nproc) && \
32 make install && \
33 cd .. && \
34 rm -rf mpich-3.1.4.tar.gz mpich-3.1.4 && \
35 ldconfig
36

37 # Create new user
38 RUN useradd docker
39 WORKDIR /home/docker
40

41 # Install Python dependencies
42 RUN pip3 install numpy>=1.8 \
43 pytools>=2016.2.1 \
44 mako>=1.0.0 \
45 appdirs>=1.4.0 \
46 mpi4py>=2.0 && \
47 pip3 install pycuda>=2015.1 \
48 h5py>=2.6.0 && \
49 wget -q -O GiMMiK-2.1.tar.gz \
50 https://github.com/vincentlab/GiMMiK/archive/v2.1.tar.gz && \
51 tar -xvzf GiMMiK-2.1.tar.gz && \
52 cd GiMMiK-2.1 && \
53 python3 setup.py install && \

(continues on next page)

80 Chapter 1. Publications

https://hub.docker.com/r/ethcscs/pyfr/tags


Sarus Documentation, Release 1.3.1

(continued from previous page)

54 cd .. && \
55 rm -rf GiMMiK-2.1.tar.gz GiMMiK-2.1
56

57 # Set base directory for pyCUDA cache
58 ENV XDG_CACHE_HOME /tmp
59

60 # Install PyFR
61 RUN wget -q -O PyFR-1.8.0.zip http://www.pyfr.org/download/PyFR-1.8.0.zip && \
62 unzip -qq PyFR-1.8.0.zip && \
63 cd PyFR-1.8.0 && \
64 python3 setup.py install && \
65 cd .. && \
66 rm -rf PyFR-1.8.0.zip
67

68 CMD ["pyfr --help"]

Used OCI hooks

• NVIDIA Container Runtime hook

• Native MPI hook (MPICH-based)

References

1.7.9 Intel Cluster Edition 19.01

This section provides the instructions to build Intel Parallel Studio 2019 Update 1 based on the Centos 7 distribution:
Intel Parallel Studio provides a complete environment to build an optimised appication, since it features compilers,
communication and mathematical libraries.

Please note that the Intel license prevents the redistribution of the software, therefore the license file needs to be
available locally on the system where you are building the image: the license file is called intel_license_file.lic in the
example Dockerfile provided below and it will be copied inside the container during the installation.

Furthermore, you need to create a local configuration file with the instructions required to proceed with the silent
installation of Intel Parallel Studio: the name of the file is intel19.01_silent.cfg in the example below and it will
provide the installation of the Intel C, C++ and Fotran Compiler together with the Intel MPI library and the Intel
MKL.

Container image and Dockerfile

The starting point is the official image of CentOS 7: on top of that image, you need to install the required build tools
and proceed with the silent installation of the Intel compiler.

FROM centos:7

SHELL ["/bin/bash", "--login", "-c"]

RUN yum install -y cpio

WORKDIR /usr/local/src

# install Intel Compiler and Intel MPI

(continues on next page)
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COPY intel_license_file.lic /opt/intel/licenses/USE_SERVER.lic
ADD intel19.01_silent.cfg .
ADD parallel_studio_xe_2019_update1_cluster_edition_online.tgz .

RUN cd parallel_studio_xe_2019_update1_cluster_edition_online \
&& ./install.sh --ignore-cpu -s /usr/local/src/intel19.01_silent.cfg

RUN echo -e "source /opt/intel/bin/compilervars.sh intel64 \nsource /opt/intel/mkl/
→˓bin/mklvars.sh intel64 \nsource /opt/intel/impi/2019.1.144/intel64/bin/mpivars.sh
→˓release" >> /etc/profile.d/intel.sh \

&& echo -e "/opt/intel/lib/intel64 \n/opt/intel/mkl/lib/intel64 \n/opt/intel/impi/
→˓2019.1.144/intel64/lib \n/opt/intel/impi/2019.1.144/intel64/lib/release \n/opt/
→˓intel/impi/2019.1.144/intel64/libfabric/lib \n/opt/intel/impi/2019.1.144/intel64/
→˓libfabric/lib/prov" > /etc/ld.so.conf.d/intel.conf \

&& ldconfig

Please note that using the login shell will source the profile files and therefore update the paths to retrieve compiler
executables and libraries: however it will have an effect only on the commands executed within the Dockerfile, serving
as a reminder to use it when building applications with the Intel image.

The instructions above will copy the local license file intel_license_file.lic to /opt/intel/licenses/USE_SERVER.lic,
since the license file of the example will use a server to authenticate: please check that the address of the nameserver
provided in DOCKER_OPTS will be able to resolve the name of the license server and that it is consistent with the
nameservers listed in /etc/resolv.conf.

The following silent configuration file provides a minimal list of the Intel COMPONENTS necessary for the installa-
tion: the advantage of the minimal list is the reduced amount of disk space required while building the image:

ACCEPT_EULA=accept
CONTINUE_WITH_OPTIONAL_ERROR=yes
PSET_INSTALL_DIR=/opt/intel
CONTINUE_WITH_INSTALLDIR_OVERWRITE=yes
COMPONENTS=;intel-clck__x86_64;intel-icc__x86_64;intel-ifort__x86_64;intel-mkl-core-c_
→˓_x86_64;intel-mkl-cluster-c__noarch;intel-mkl-gnu-c__x86_64;intel-mkl-core-f__x86_
→˓64;intel-mkl-cluster-f__noarch;intel-mkl-gnu-f__x86_64;intel-mkl-f__x86_64;intel-
→˓imb__x86_64;intel-mpi-sdk__x86_64
PSET_MODE=install
ACTIVATION_LICENSE_FILE=/opt/intel/licenses/USE_SERVER.lic
ACTIVATION_TYPE=license_server
AMPLIFIER_SAMPLING_DRIVER_INSTALL_TYPE=kit
AMPLIFIER_DRIVER_ACCESS_GROUP=vtune
AMPLIFIER_DRIVER_PERMISSIONS=666
AMPLIFIER_LOAD_DRIVER=no
AMPLIFIER_C_COMPILER=none
AMPLIFIER_KERNEL_SRC_DIR=none
AMPLIFIER_MAKE_COMMAND=/usr/bin/make
AMPLIFIER_INSTALL_BOOT_SCRIPT=no
AMPLIFIER_DRIVER_PER_USER_MODE=no
SIGNING_ENABLED=yes
ARCH_SELECTED=INTEL64

The docker command line used to build the Intel image described in the Dockerfile above (save it as intel19.01-
cuda10.1.docker) is the following: ` docker build --network=host -f intel19.01-cuda10.1.
docker -t intel:19.01-cuda10.1 . ` The command line argument –network=host sets the networking
mode for the RUN instructions during the build phase to match the host network configuration.
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