

Sarus - An OCI-compatible container engine for HPC

release: 1.2.0

Sarus is a software to run Linux containers on High Performance Computing
environments. Its development has been driven by the specific requirements of
HPC systems, while leveraging open standards and technologies to encourage
vendor and community involvement.

Key features:

	Spawning of isolated software environments (containers), built by users to
fit the deployment of a specific application

	Security oriented to HPC systems

	Extensible runtime by means of OCI hooks to allow current and future
support of custom hardware while achieving native performance

	Creation of container filesystems tailored for diskless nodes and parallel
filesystems

	Compatibility with the presence of a workload manager

	Compatibility with the Open Container Initiative (OCI) standards:

	Can pull images from registries adopting the OCI Distribution
Specification or the Docker Registry HTTP API V2 protocol

	Can import and convert images adopting the OCI Image Format

	Sets up a container bundle complying to the OCI Runtime Specification

	Uses an OCI-compliant runtime to spawn the container process

Publications

	Benedicic, L., Cruz, F.A., Madonna, A. and Mariotti, K., 2019, June. Sarus: Highly Scalable Docker Containers for HPC Systems. In International Conference on High Performance Computing (pp. 46-60). Springer, Cham.

https://doi.org/10.1007/978-3-030-34356-9_5

Contents:

	Quickstart
	Install Sarus

	Use Sarus

	Overview
	Sarus architecture

	Importing container images

	Local system repositories

	Container instantiation

	Custom installation
	Requirements

	Installation

	Post-installation actions

	Configuration
	Basic configuration

	Configuration file reference

	Configuring Sarus for OCI hooks

	User guides
	User guide

	ABI compatibility and its implications

	Creating custom Docker images with CUDA

	Developer documentation
	Class diagram

	Running unit and integration tests

	SSH Hook

	Sarus Cookbook
	Test Setup

	CUDA N-body

	OSU Micro benchmarks

	NVIDIA GPUDirect RDMA

	OpenMPI with SSH launcher

	GROMACS

	TensorFlow with Horovod

	PyFR

	Intel Cluster Edition 19.01

Indices and tables

	Index

	Module Index

	Search Page

Quickstart

Install Sarus

You can quickly install Sarus by following the simple steps below.

	Download the latest standalone Sarus archive from the official GitHub Releases [https://github.com/eth-cscs/sarus/releases]:

mkdir /opt/sarus
cd /opt/sarus
Adjust url to your prefered version
wget https://github.com/eth-cscs/sarus/releases/download/1.0.1/sarus-Release.tar.gz

	Extract Sarus in the installation directory:

cd /opt/sarus
tar xf sarus-Release.tar.gz

	Run the configuration script to
finalize the installation of Sarus:

cd /opt/sarus/1.0.1-Release # adapt folder name to actual version of Sarus
sudo ./configure_installation.sh

Important

The configuration script needs to run with root privileges in order to
set Sarus as a root-owned SUID program.

The configuration script requires the program mksquashfs to be installed
on the system, which is typically available through the squashfs-tools package.

Also note that the configuration script will create a minimal working configuration.
For enabling additional features, please refer to the Configuration file reference.

Note

You can refer to the section Custom installation
if you want to build Sarus from source or from the Spack package manager.

Important

As explained by the output of the previous script, you need to persistently add Sarus to your
PATH. I.e., something like adding “export PATH=/opt/sarus/bin:${PATH}” to your .bashrc.

	Perform the Post-installation actions.

Note

The Sarus binary from the standalone archive looks for SSL certificates
into the /etc/ssl directory. Depending on the Linux distribution,
some certificates may be located in different directories. A possible
solution to expose the certificates to Sarus is a symlink. For example,
on CentOS 7 and Fedora 31:

sudo ln -s /etc/pki/ca-trust/extracted/pem/tls-ca-bundle.pem /etc/ssl/cert.pem

Use Sarus

Now Sarus is ready to be used. Below is a list of the available commands:

help: Print help message about a command
images: List images
load: Load the contents of a tarball to create a filesystem image
pull: Pull an image from a registry
rmi: Remove an image
run: Run a command in a new container
ssh-keygen: Generate the SSH keys in the local repository
version: Show the Sarus version information

Below is an example of some basic usage of Sarus:

$ sarus pull alpine
image : index.docker.io/library/alpine/latest
cache directory : "/home/user/.sarus/cache"
temp directory : "/tmp"
images directory : "/home/user/.sarus/images"
> save image layers ...
> pulling : sha256:9d48c3bd43c520dc2784e868a780e976b207cbf493eaff8c6596eb871cbd9609
> completed : sha256:9d48c3bd43c520dc2784e868a780e976b207cbf493eaff8c6596eb871cbd9609
> expanding image layers ...
> extracting : "/home/user/.sarus/cache/sha256:9d48c3bd43c520dc2784e868a780e976b207cbf493eaff8c6596eb871cbd9609.tar"
> make squashfs image: "/home/user/.sarus/images/index.docker.io/library/alpine/latest.squashfs"

$ sarus images
REPOSITORY TAG DIGEST CREATED SIZE SERVER
alpine latest 65e50dd72f89 2019-08-21T16:07:06 2.59MB index.docker.io

$ sarus run alpine cat /etc/os-release
NAME="Alpine Linux"
ID=alpine
VERSION_ID=3.10.2
PRETTY_NAME="Alpine Linux v3.10"
HOME_URL="https://alpinelinux.org/"
BUG_REPORT_URL="https://bugs.alpinelinux.org/"

Note

You can refer to the section User guides
for more information on how to use Sarus.

Overview

Sarus is a tool for High-Performance Computing (HPC) systems that provides a
user-friendly way to instantiate feature-rich containers from Docker images. It
has been designed to address the unique requirements of HPC installations, such
as: native performance from dedicated hardware, improved security due to the
multi-tenant nature of the systems, support for network parallel filesystems and
diskless computing nodes, compatibility with a workload manager or job
scheduler.

Keeping flexibility, extensibility and community efforts in high regard, Sarus
relies on industry standards and open source software. Consider for instance the
use of runc [https://github.com/opencontainers/runc], an OCI-compliant
container runtime that is also used internally by Docker [https://www.docker.com/blog/runc/]. Moreover, Sarus leverages the Open
Containers Initiative (OCI) [https://www.opencontainers.org/] specifications
to extend the capabilities of runc and enable multiple high-performance
features. In the same vein, Sarus depends on a widely-used set of libraries,
tools, and technologies to reap several benefits: reduce maintenance effort and
lower the entry barrier for service providers wishing to install the software,
or for developers seeking to contribute code.

Sarus architecture

[image: Sarus architecture]Sarus architecture diagram

The workflows supported by Sarus are implemented through the interaction of
several software components. The CLI component processes the program
arguments entered through the command line and calls other components to perform
the actions requested by the user. The Image Manager component is
responsible for importing container images onto the system (usually by
downloading them from a remote registry), converting the images to Sarus’s own
format, storing them on local system repositories, and querying the contents of
such repositories. The Runtime component creates and executes containers,
first by setting up a bundle according to the OCI Runtime Specification: such
bundle is made of a root filesystem directory for the container and a JSON
configuration file. After preparing the bundle, the Runtime component will call
an external OCI runtime (such as runc), which will effectively spawn the
container process. Sarus can instruct the OCI runtime to use one or more
OCI hooks, small programs able to perform
actions (usually related to container customization) at selected points during
the container lifetime.

In the following sections, we will illustrate how Sarus performs some of its
fundamental operations, highlighting the motivations and purposes of the
implemented solutions.

Importing container images

One of the first actions a user will perform with a fresh Sarus installation
is getting some container images on the system. This is usually
accomplished by retrieving the images from a remote cloud registry (e.g. Docker
Hub [https://hub.docker.com]) using the sarus pull command.

Sarus is able to communicate with registries using the Docker Registry HTTP API
V2 protocol or the OCI Distribution Specification API protocol. After contacting
the registry, Sarus obtains the image manifest [https://github.com/opencontainers/image-spec/blob/master/manifest.md], a file
providing the list of filesystem layers [https://docs.docker.com/storage/storagedriver/#images-and-layers] and
metadata which constitute the image. Sarus uses multiple parallel threads to
download the layers as compressed archives in a cache directory. This
download cache will be looked-up by Sarus during subsequent pull commands to
determine if a compressed layer has already been downloaded and can be reused.

Once the filesystem layers of a container image are all present on the system,
they are uncompressed and expanded in a temporary directory created by Sarus for this purpose. The various
layers are then squashed together, resulting in a flattened image using the
squashfs [https://en.wikipedia.org/wiki/SquashFS] format. A metadata file is
also generated from a subset of the OCI image configuration. Flattening the image
improves the I/O performance of the container, as detailed below in
Root filesystem. It also has the benefit of reducing the
size of the images on disk, by merging the topmost layer with the underlying ones.

When pulling images from the cloud is inconvenient or undesirable, the
sarus load command can be used to load a container image from a local
tar file. In this case, the image manifest and compressed filesystem
layers are not downloaded but extracted from the tar archive itself.
The process then continues as described above.

After the squashfs image and the metadata file are generated, Sarus copies them
into the local user repository, described in the next section.

Local system repositories

Sarus stores images available on the system in local repositories, which are
individual for each user. The application expects to access a configurable
base path, where directories
named after users are located. Sarus will look for a local repository in the
<base path>/<user name>/.sarus path. If a repository does not exist, a new,
empty one is created.

A local repository is a directory containing at least:

	the cache directory for the downloaded image layers;

	the images directory for Sarus images: inside this directory, images are
stored in a hierarchy with the format <registry server>/<repository>/<image
name>, designed to replicate the structure of the strings used to
identify images. At the end of a pull or load process, Sarus copies the
image squashfs and metadata files into the last folder of the hierarchy,
named after the image, and sets the names of both files to match the image tag;

	the metadata.json file indexing the contents of the images folder

[image: Structure of a Sarus local repository]Structure of a Sarus local repository

Sarus can also be configured to create a system-wide centralized
repository. Such repository
is intended to broadcast images to users, e.g. in cases when said images cannot
be freely redistributed. The centralized repository is meant to be read-only for
regular users, and its contents should be modifiable only by the system
administrators.

Users can query the contents of the individual and centralized repositories
using the sarus images command.

Container instantiation

The Runtime component of Sarus is responsible for setting up and coordinating
the launch of container instances. When the user requests the execution of a
container process through the sarus run command, an OCI bundle is
first created in a dedicated directory.
As mentioned above, an OCI bundle is defined by the OCI Runtime Specification as
the content from which an OCI-compliant low-level runtime, e.g. runc, will spawn
a container. The bundle is formed by a rootfs directory, containing the root
filesystem for the container, and a config.json file providing detailed
settings to the OCI runtime.

Before actually generating the contents of the bundle, Sarus will create and
join a new Linux mount namespace in order to make the mount points of the
container inaccessible from the host system. An in-memory temporary
filesystem is then mounted on the
directory designated to host the OCI bundle. This process yields several
beneficial effects, e.g.:

	Unsharing the mount namespace prevents other processes of the host system from having
visibility on any artifact related to the container instance [unshare-manpage] [mount-namespace-manpage].

	The newly-created mount namespace will be deleted once the container and Sarus
processes exit; thus, setting up the bundle in a filesystem that belongs only to
the mount namespace of the Sarus process ensures complete cleanup of
container resources upon termination.

	Creating the bundle, and consequently the container rootfs, in an in-memory temporary
filesystem improves the performance of the container writable layer. This solution also suits diskless computing nodes (e.g. as those found in Cray XC systems), where the host filesystem also resides in RAM.

In the next subsections, we will describe the generation of the bundle contents
in more detail.

Root filesystem

The root filesystem for the container is assembled in a dedicated
directory inside the OCI bundle location
through several steps:

1. The squashfs file corresponding to the image requested by the user is mounted as
a loop device on the configured rootfs mount point. The loop mount allows
access to the image filesystem as if it resided on a real block device (i.e. a
storage drive). Since Sarus images are likely to be stored on network parallel
filesystems, reading multiple different files from the image 1 causes the
thrashing of filesystem metadata, and consequently a significant performance
degradation. Loop mounting the image prevents metadata thrashing and improves
caching behavior, as all container instances access a single squashfs file on
the parallel filesystem. The effectiveness of this approach has already been
demonstrated by Shifter [ShifterCUG2015].

2. Sarus proceeds to create an overlay filesystem [https://www.kernel.org/doc/Documentation/filesystems/overlayfs.txt]. An
overlay filesystem, as the name suggests, is formed by two different filesystem
layers on top of each other (thus called respectively upper and lower), but it
is presented as a single entity which combines both. The loop-mounted image is
re-used as the read-only lower layer, while part of the OCI bundle temporary
filesystem forms the writable upper layer. An overlay filesystem allows the
contents of Sarus containers to be transparently modifiable by the users, while
preserving the integrity of container images: modifications exist only in the
overlay upper filesystem, while corresponding entries in the lower filesystem
are hidden. Please refer to the official
OverlayFS [https://www.kernel.org/doc/Documentation/filesystems/overlayfs.txt]
documentation for more details.

3. Selected system configuration files (e.g. /etc/hosts, /etc/passwd,
/etc/group) are copied into the rootfs of the container. These
configurations are required to properly setup core functionality of the
container in a multi-tenant cluster system, for example file permissions in
shared directories, or networking with other computing nodes.

4. Custom mounts are performed. These are bind mounts requested by the
system administrator or by the user to customize the container according to the needs
and resources of an HPC system or a specific use case.

5. The container’s rootfs is completed by finally remounting [http://man7.org/linux/man-pages/man2/mount.2.html] the filesystem to remove
potential suid bits from all its files and directories.

[image: OCI bundle setup in Sarus]OCI bundle setup in Sarus

config.json

The JSON configuration file of the OCI bundle is generated by combining data
from the runtime execution context, command-line parameters and parameters
coming from the image. We hereby highlight the most important details:

	The uid/gid of the user from the host system are assigned to the container
process, regardless of the user settings in the original image.
This is done to keep a consistent experience with the host system, especially
regarding file ownership and access permissions.

	If the image specified an entrypoint or default arguments, these are honored,
unless the user specifies an override through Sarus’s command line. For more details,
please refer to this section of the User Guide.

	The container environment variables are created by uniting the variables from
the host environment and the variables from the image. If a variable exists in both
the host and the image, the value from the image is taken. This ensures the
container behaves as expected by its creators (e.g. in the case of PATH). Selected variables
are also adapted by Sarus to suit system-specific extensions, like NVIDIA GPU support,
native MPI support or container SSH connections.

	If the image specifies a working directory, the container process is started
there. Otherwise, the process is started in the container’s root directory.
In this regard, Sarus shows the same behavior as Docker.

	The container process is configured to run with all Linux capabilities disabled 2,
thus preventing it from acquiring new privileges by any means. This is done in the
interest of security.

	New PID and mount namespaces are setup for the container process.

	Settings for OCI hooks are copied from Sarus’s configuration file.

Container launch

Once the bundle’s rootfs directory and confg.json file are in place, Sarus forks
a process calling an OCI-compliant runtime,
which in turn spawns and maintains the container process.

The OCI runtime is also in charge of executing the OCI hooks specified by Sarus. Hooks are an effective way of
extending the functionality provided by the container runtime without additional
development or maintenance effort on the runtime itself. In the context of HPC,
hooks have shown the potential to augment containers based on open standards
with native support for dedicated custom hardware, like accelerators or
interconnect technologies, by letting vendors and third-party developers create
ad hoc hook programs.

Once the container and OCI runtime processes terminate, Sarus itself concludes
its workflow and exits.

	1

	A prominent use case is, for example, a Python application.

	2

	Linux divides the privileges traditionally associated with superuser into distinct units, known as capabilities [http://man7.org/linux/man-pages/man7/capabilities.7.html].

	unshare-manpage

	http://man7.org/linux/man-pages/man2/unshare.2.html

	mount-namespace-manpage

	http://man7.org/linux/man-pages/man7/mount_namespaces.7.html

	ShifterCUG2015

	Jacobsen, D.M., Canon, R.S., “Contain This, Unleashing Docker for HPC”, Cray Users GroupConference 2015 (CUG’15), https://www.nersc.gov/assets/Uploads/cug2015udi.pdf

Custom installation

	Requirements
	Operating System

	Software

	Installation
	Installing with Spack

	Installing from source

	Post-installation actions
	Review permissions required by Sarus

	Load required kernel modules

	Automatic update of Sarus’ passwd cache

Requirements

Operating System

	Linux kernel >= 3.0

	util-linux [https://github.com/karelzak/util-linux] >= 2.20 (these utilities are usually bundled with the Linux distribution itself;
v2.20 was released in August 2011)

	The following kernel modules loaded:

	loop

	squashfs

	overlayfs

Software

System packages

For Debian-based systems (tested on Debian 10 and Ubuntu 18.04):

Install packages
sudo apt-get update --fix-missing
sudo apt-get install -y --no-install-recommends build-essential
sudo apt-get install -y --no-install-recommends \
 kmod rsync curl gdb git vim autoconf automake libtool \
 squashfs-tools libcap-dev cmake wget zlib1g-dev libssl-dev \
 libexpat1-dev ca-certificates \
 python3 python3-pip python3-setuptools
sudo apt-get clean
sudo rm -rf /var/lib/apt/lists/*
sudo update-ca-certificates

For CentOS 7:

Install packages
sudo yum install -y epel-release
sudo yum install -y centos-release-scl-rh
sudo yum install -y devtoolset-8-gcc-c++ glibc-static sudo curl wget rsync which \
 make bzip2 autoconf automake libtool squashfs-tools libcap-devel cmake3 \
 zlib-devel openssl-devel expat-devel git \
 python3 python3-pip python3-setuptools
sudo yum clean all
sudo rm -rf /var/cache/yum

Create symlink to cmake3 to uniform commands with other distributions
sudo ln -s /usr/bin/cmake3 /usr/bin/cmake
sudo ln -s /usr/bin/ctest3 /usr/bin/ctest

Enable devtoolset-3 to use GCC 4.9.2
source /opt/rh/devtoolset-8/enable

Python 3 is required if you are interested to also run the integration tests:

Debian/Ubuntu
$ sudo apt-get install python3 python3-pip python3-setuptools

CentOS
$ sudo yum install python3 python3-pip python3-setuptools

All platforms, after installing Python + pip
$ pip3 install setuptools
$ pip3 install pytest gcovr pexpect

Note

If you plan to install Sarus using the Spack package manager, you can skip
the rest of this page, since the remaining dependencies will be installed by
Spack itself.

Additional dependencies

	libarchive [https://github.com/libarchive/libarchive] 3.4.1

	Boost libraries [https://www.boost.org/] >= 1.60.x (recommended 1.65.x)

	C++ REST SDK [https://github.com/Microsoft/cpprestsdk] v2.10.0

	RapidJSON [http://rapidjson.org/index.html] commit 663f076

Important

We recommend these versions as they are the ones routinely used for build
integration and testing, thus guaranteed to work.

As the specific software versions listed above may not be provided by the system
package manager, we suggest to install from source:

Note

The following instructions will default to /usr/local as the installation
prefix. To install to a specific location, use the -DCMAKE_INSTALL_PREFIX
CMake options for libarchive and C++ REST SDK and the --prefix option for
the Boost libraries.

pwd_bak=$PWD

Install boost
cd /tmp && \
 mkdir -p boost/1_65_0 && cd boost/1_65_0 && \
 wget https://downloads.sourceforge.net/project/boost/boost/1.65.0/boost_1_65_0.tar.bz2 && \
 tar xf boost_1_65_0.tar.bz2 && \
 mv boost_1_65_0 src && cd src && \
 ./bootstrap.sh && \
 sudo ./b2 -j$(nproc) \
 --with-atomic \
 --with-chrono \
 --with-filesystem \
 --with-random \
 --with-regex \
 --with-system \
 --with-thread \
 --with-program_options \
 --with-date_time \
 install && \
 cd ${pwd_bak} && \
 rm -rf /tmp/boost

pwd_bak=$PWD

Install libarchive
cd /tmp && \
 mkdir -p libarchive/3.4.1 && \
 cd libarchive/3.4.1 && \
 wget https://github.com/libarchive/libarchive/releases/download/v3.4.1/libarchive-3.4.1.tar.gz && \
 tar xvf libarchive-3.4.1.tar.gz && \
 mv libarchive-3.4.1 src && \
 mkdir src/build-cmake && cd src/build-cmake && \
 cmake .. && \
 make -j$(nproc) && \
 sudo make install && \
 cd ${pwd_bak} && \
 rm -rf /tmp/libarchive

pwd_bak=$PWD

Install cpprestsdk
cd /tmp && \
 ([-e /usr/include/xlocale.h] || ln -s /usr/include/locale.h /usr/include/xlocale.h) && \
 mkdir -p cpprestsdk/v2.10.0 && cd cpprestsdk/v2.10.0 && \
 wget https://github.com/Microsoft/cpprestsdk/archive/v2.10.0.tar.gz && \
 tar xf v2.10.0.tar.gz && \
 mv cpprestsdk-2.10.0 src && cd src/Release && \
 mkdir -p build && cd build && \
 cmake -DCMAKE_BUILD_TYPE=Debug -DBUILD_SHARED_LIBS=0 -DWERROR=FALSE .. && \
 sed -i /tmp/cpprestsdk/v2.10.0/src/Release/include/cpprest/asyncrt_utils.h -e '1s/^/#include <sys\/time.h>\n/' || true && \
 make -j$(nproc) && \
 sudo make install && \
 cd ${pwd_bak} && \
 rm -rf /tmp/cpprestsdk

pwd_bak=$PWD

Install RapidJSON
cd /tmp && \
 mkdir -p rapidjson && cd rapidjson && \
 wget -O rapidjson-master.tar.gz https://github.com/Tencent/rapidjson/archive/663f076c7b44ce96526d1acfda3fa46971c8af31.tar.gz && \
 tar xvzf rapidjson-master.tar.gz && \
 cd rapidjson-663f076c7b44ce96526d1acfda3fa46971c8af31 && \
 sudo mkdir -p /usr/local/include/rapidjson && sudo cp -r include/rapidjson /usr/local/include/rapidjson && \
 cd ${pwd_bak} && \
 rm -rf /tmp/rapidjson

Note

Should you have trouble pointing to a specific version of Boost when
building the C++ REST SDK, use the -DBOOST_ROOT CMake option with the
prefix directory to your Boost installation.

OCI-compliant runtime

Sarus internally relies on an OCI-compliant runtime to spawn a container.

Here we will provide some indications to install runc [https://github.com/opencontainers/runc], the reference implementation from
the Open Container Initiative. The recommended version is v1.0.0-rc10.

The simplest solution is to download a pre-built binary release from the
project’s GitHub page:

pwd_bak=$PWD

Install runc
cd /tmp && \
 wget -O runc.amd64 https://github.com/opencontainers/runc/releases/download/v1.0.0-rc10/runc.amd64 && \
 chmod 755 runc.amd64 && \
 sudo mv runc.amd64 /usr/local/bin/ && \
 sudo chown root:root /usr/local/bin/runc.amd64 && \
 cd ${pwd_bak}

Alternatively, you can follow the instructions to build from source [https://github.com/opencontainers/runc#building], which allows more
fine-grained control over runc’s features, including security options.

Init process

Sarus can start an init process within containers in order to reap zombie
processes and allow container applications to receive signals.

Here we will provide some indications to install tini [https://github.com/krallin/tini], a very lightweight init process which is
also used by Docker. The recommended version is v0.18.0.

The simplest solution is to download a pre-built binary release from the
project’s GitHub page:

pwd_bak=$PWD

Install tini
cd /tmp && \
 wget -O tini-static-amd64 https://github.com/krallin/tini/releases/download/v0.18.0/tini-static-amd64 && \
 chmod 755 tini-static-amd64 && \
 sudo mv tini-static-amd64 /usr/local/bin/ && \
 sudo chown root:root /usr/local/bin/tini-static-amd64 && \
 cd ${pwd_bak}

Alternatively, you can follow the instructions to build from source [https://github.com/krallin/tini#building-tini].

Installation

Sarus can be installed in three alternative ways:

	Using the standalone Sarus archive

	Using the Spack package manager

	Installing from source

When installing from source or with Spack, make sure that the required
dependencies are available on the system.

Whichever procedure you choose, please also read the page about
Post-installation actions to ensure everything is set to run Sarus.

Installing with Spack

Sarus provides Spack [https://spack.io/] packages for itself and its
dependencies which are not yet covered by Spack’s builtin repository.
Installing with Spack is convenient because detection and installation of
dependencies are handled automatically.

As explained in the execution requirements, Sarus must be installed as a
root-owned SUID binary in a directory hierarchy which belongs to the root user
at all levels.
The straightforward way to achieve this is to use a root-owned Spack and run the
installation procedure with super-user privileges.
An alternative procedure for test/development installations with a non-root
Spack is discussed in this subsection.

The installation procedure with Spack follows below.
If you are not performing these actions as the root user, prefix each spack
command with sudo:

Setup Spack bash integration (if you haven't already done so)
. ${SPACK_ROOT}/share/spack/setup-env.sh

Create a local Spack repository for Sarus-specific dependencies
export SPACK_LOCAL_REPO=${SPACK_ROOT}/var/spack/repos/cscs
spack repo create ${SPACK_LOCAL_REPO}
spack repo add ${SPACK_LOCAL_REPO}

Import Spack packages for Cpprestsdk, RapidJSON and Sarus
cp -r <Sarus project root dir>/spack/packages/* ${SPACK_LOCAL_REPO}/packages/

Install Sarus
spack install --verbose sarus

By default, the latest tagged release will be installed. To get the bleeding edge,
use the @develop version specifier.

The Spack package for Sarus supports the following variants [https://spack.readthedocs.io/en/latest/basic_usage.html#basic-variants]
to customize the installation:

	ssh: Build and install the SSH hook and custom OpenSSH software to enable
connections inside containers [True].

	configure_installation: Run the script to setup a starting Sarus
configuration as part of the installation phase. Running the script
requires super-user privileges [True].

For example, in order to perform a quick installation without SSH we could use:

spack install --verbose sarus ssh=False

Using Spack as a non-root user (for test and development only)

By default, the Spack package for Sarus will run a configuration script as part of the installation phase to setup a
minimal working configuration. The script needs to run with root privileges,
which in turn means the spack install command must be issued with root powers.

The configure_installation variant of the Spack package allows to control
the execution of the script. By negating the variant, Sarus can be installed as
a user different than root. It is then necessary to access the installation path
and run the configuration script directly. While doing so still requires
sudo, it can be performed with a user’s personal Spack software and the
amount of root-owned files in the Sarus installation is kept to a minimum.

Installing as non-root likely means that Sarus is located in a directory
hierarchy which is not root-owned all the way up to /.
This is not allowed by the program’s security checks, so they have to be disabled.

Important

The ability to disable security checks is only meant as a convenience
feature when rapidly iterating over test and development installations.
It is strongly recommended to keep the checks enabled for production
deployments.

Sarus can then be loaded and used normally. The procedure is summed up in the
following example:

Setup Spack bash integration (if you haven't already done so)
. ${SPACK_ROOT}/share/spack/setup-env.sh

Create a local Spack repository for Sarus-specific dependencies
export SPACK_LOCAL_REPO=${SPACK_ROOT}/var/spack/repos/cscs
spack repo create ${SPACK_LOCAL_REPO}
spack repo add ${SPACK_LOCAL_REPO}

Import Spack packages for Cpprestsdk, RapidJSON and Sarus
cp -r <Sarus project root dir>/spack/packages/* ${SPACK_LOCAL_REPO}/packages/

 # Install Sarus skipping the configure_installation script
 $ spack install --verbose sarus@develop ~configure_installation

 # Use 'spack find' to get the installation directory
 $ spack find -p sarus@develop
 ==> 1 installed package
 -- linux-ubuntu18.04-sandybridge / gcc@7.5.0 --------------------
 sarus@develop /home/ubuntu/spack/opt/spack/linux-ubuntu18.04-sandybridge/gcc-7.5.0/sarus-develop-dy4f6tlhx3vwf6zmqityvgdhpnc6clg5

 # cd into the installation directory
 $ cd /home/ubuntu/spack/opt/spack/linux-ubuntu18.04-sandybridge/gcc-7.5.0/sarus-develop-dy4f6tlhx3vwf6zmqityvgdhpnc6clg5

 # Run configure_installation script
 $ sudo ./configure_installation.sh

 # Disable security checks
 $ sudo sed -i -e 's/"securityChecks": true/"securityChecks": false/' etc/sarus.json

 # Return to home folder and test Sarus
 $ cd
 $ spack load sarus@develop
 $ sarus pull alpine
 [...]
 $ sarus run alpine cat /etc/os-release
 NAME="Alpine Linux"
 ID=alpine
 VERSION_ID=3.11.5
 PRETTY_NAME="Alpine Linux v3.11"
 HOME_URL="https://alpinelinux.org/"
 BUG_REPORT_URL="https://bugs.alpinelinux.org/"

Installing from source

Build and install

Get Sarus source code:

git clone git@github.com:eth-cscs/sarus.git
cd sarus

Create a new folder ${build_dir}} to build Sarus from source. e.g. build-Release:

 mkdir -p ${build_dir} && cd ${build_dir}

Configure and build (in this example ${build_type} = Release and ${toolchain_file} = gcc.cmake:

 cmake -DCMAKE_TOOLCHAIN_FILE=${build_dir}/../cmake/toolchain_files/${toolchain_file} \
 -DCMAKE_PREFIX_PATH="/usr/local/include/rapidjson" \
 -DCMAKE_BUILD_TYPE=${build_type} \
 -DCMAKE_INSTALL_PREFIX=${install_dir} \
 ..

 make -j$(nproc)

Note

CMake should automatically find the dependencies (include directories,
shared objects, and binaries). However, should CMake not find a dependency,
its location can be manually specified through the command line. E.g.:

cmake -DCMAKE_TOOLCHAIN_FILE=../cmake/toolchain_files/gcc.cmake \
 -DCMAKE_INSTALL_PREFIX=${prefix_dir} \
 -DCMAKE_BUILD_TYPE=Release \
 -DCMAKE_PREFIX_PATH="<boost install dir>;<cpprestsdk install dir>;<libarchive install dir>;<rapidjson install dir>" \
 -Dcpprestsdk_INCLUDE_DIR=<cpprestsdk include dir> \
 ..

Note

Old versions of CMake might have problems finding Boost 1.65.0.
We recommend to use at least CMake 3.10 in order to avoid compatibility issues.

Below are listed the Sarus-specific options that can be passed to CMake in
order to customize your build:

	CMAKE_INSTALL_PREFIX: installation directory of Sarus [/usr/local].

	ENABLE_SSH: build and install the SSH hook and custom OpenSSH software to enable
connections inside containers [TRUE].

	ENABLE_TESTS_WITH_VALGRIND: run each unit test through valgrind [FALSE].

Copy files to the installation directory:

 sudo make install

Create the directory in which Sarus will create the OCI
bundle for containers. The location of this directory is configurable at any time, as
described in the next section. As an example, taking default values:

 sudo mkdir -p ${install_dir}/var/OCIBundleDir

Finalize the installation

To complete the installation, run the configuration script
located in the installation path.
This script needs to run with root privileges in order to set Sarus as a
root-owned SUID program:

 sudo cp /usr/local/bin/tini-static-amd64 ${install_dir}/bin || true
 sudo cp /usr/local/bin/runc.amd64 ${install_dir}/bin || true

 sudo ${install_dir}/configure_installation.sh
 export PATH=${install_dir}/bin:${PATH}

Note

The configuration script will create a minimal working configuration.
For enabling additional features, please refer to the
Configuration file reference.

As suggested by the output of the script, you should also add Sarus to your PATH.
Add a line like export PATH=/opt/sarus/bin:${PATH} to your .bashrc in
order to make the addition persistent.

Post-installation actions

Review permissions required by Sarus

During execution

	Sarus must run as a root-owned SUID executable and be able to achieve full
root privileges to perform mounts and create namespaces.

	Write/read permissions to the Sarus’s centralized repository.
The system administrator can configure the repository’s location through the
centralizedRepositoryDir entry in sarus.json.

	Write/read permissions to the users’ local image repositories.
The system administrator can configure the repositories location through the
localRepositoryBaseDir entry in sarus.json.

Security related

Because of the considerable power granted by the requirements above, as a
security measure Sarus will check that critical files and directories opened
during privileged execution meet the following restrictions:

	They are owned by root.

	They are writable only by the owner.

	All their parent directories (up to the root path) are owned by root.

	All their parent directories (up to the root path) are writable only by the
owner (no write permissions to group users or other users).

The files checked for the security conditions are:

	sarus.json in Sarus’s configuration directory <sarus install prefix>/etc.

	sarus.schema.json in Sarus’s configuration directory <sarus install prefix>/etc.

	The mksquashfs utility pointed by mksquashfsPath in sarus.json.

	The init binary pointed by initPath in sarus.json.

	The OCI-compliant runtime pointed by runcPath in sarus.json.

	All the OCI hooks executables entered in sarus.json.

For directories, the conditions apply recursively for all their contents.
The checked directories are:

	The directory where Sarus will create the OCI bundle.
This location can be configured through the OCIBundleDir entry in
sarus.json.

	If the SSH Hook is enabled in sarus.json,
the directory of the custom OpenSSH software.

Most security checks can be disabled through the corresponding parameter in the Sarus configuration file.
Checks on sarus.json and sarus.schema.json will always be performed,
regardless of the parameter value.

Important

The ability to disable security checks is only meant as a convenience
feature when rapidly iterating over test and development installations.
It is strongly recommended to keep the checks enabled for production
deployments.

Load required kernel modules

If the kernel modules listed in Requirements are not loaded automatically
by the system, remember to load them manually:

sudo modprobe loop
sudo modprobe squashfs
sudo modprobe overlay

Automatic update of Sarus’ passwd cache

When executing the configure_installation script,
the passwd and group information are copied and cached
into <sarus install prefix>/etc/passwd and <sarus install prefix>/etc/group
respectively. The cache allows to bypass the host’s passwd/group database, e.g.
LDAP, which could be tricky to configure and access from the container. However,
since the cache is created/updated only once at installation time, it can
quickly get out-of-sync with the actual passwd/group information of the system.
A possible solution is to periodically run a cron job to refresh the
cache. E.g. a cron job and a script like the ones below would do:

$ crontab -l
5 0 * * * update_sarus_user.sh

$ cat update_sarus_user.sh

#!/bin/bash

/usr/bin/getent passwd > <sarus install prefix>/etc/passwd
/usr/bin/getent group > <sarus install prefix>/etc/group

Configuration

	Basic configuration
	Using the configure_installation script

	Configuration file reference
	Configuration file entries

	Example configuration file

	Configuring Sarus for OCI hooks
	OCIHooks object format

	Hooks use cases

Basic configuration

At run time, the configuration parameters of Sarus are read from a file called
sarus.json, which is expected to be a valid JSON document [https://www.json.org/] located in <installation path>/etc.
Given the privileges that Sarus
requires in order to exercise its functions, the configuration file must satisfy
specific security requirements
regarding its location and ownership.

Using the configure_installation script

The most straightforward way to generate a basic working configuration for
a Sarus installation is by using the configure_installation.sh script,
which is found in the top installation directory.

This script will set the proper permissions of the Sarus binary, create the
initial caches for passwd and group databases and fill the necessary parameters
of sarus.json.

To accomplish its tasks, the script has to be run as root and has to be located
in the top directory of a valid Sarus installation.

The following is an example script execution (assuming Sarus has been installed
in /opt/sarus) with the corresponding output:

$ sudo /opt/sarus/configure_installation.sh
Setting Sarus as SUID root
Successfully set Sarus as SUID root
Creating cached passwd database
Successfully created cached passwd database
Creating cached group database
Successfully created cached group database
Configuring etc/sarus.json
Successfully configured etc/sarus.json.
To execute sarus commands run first:
export PATH=/opt/sarus/bin:${PATH}
To persist that for future sessions, consider adding the previous line to your .bashrc or equivalent file

The configuration script is the recommended way to finalize any installation of
Sarus, regardless of the installation method chosen.

Note

Usually it is not necessary to manually run the configuration script after
installing Sarus through the Spack package manager.
Unless instructed differently, the Spack package already uses the script
internally to create a starting configuration.

Please note that configure_installation.sh will only create a baseline
configuration. To enable more advanced features of Sarus, sarus.json should
be expanded further. Please refer to the Configuration file reference
in order to do so.

The script can also be used on a Sarus installation which has already been
configured. In this case, the existing configuration will be backed up in
<installation path>/etc/sarus.json.bak and a new sarus.json file will be
generated.

Configuration file reference

Configuration file entries

securityChecks (bool, REQUIRED)

Enable/disable runtime security checks to verify that security critical files
are not tamperable by non-root users. Disabling this may be convenient when
rapidly iterating over test and development installations. It is strongly
recommended to keep these checks enabled for production deployments. Refer to
the section about security requirements for more details about these checks.

Recommended value: true

OCIBundleDir (string, REQUIRED)

Absolute path to where Sarus will generate an OCI bundle, from which a container
will be created. An OCI bundle is composed by a config.json configuration file
and a directory which will form the root filesystem of the container. The
OCIBundleDir directory must satisfy the security requirements for critical files and directories.

Recommended value: /var/sarus/OCIBundleDir

rootfsFolder (string, REQUIRED)

The name Sarus will assign to the directory inside the OCI bundle; this
directory will become the root filesystem of the container.

Recommended value: rootfs

prefixDir (string, REQUIRED)

Absolute path to the base directory where Sarus has been installed.
This path is used to find all needed Sarus-specific utilities.

Recommended value: /opt/sarus/<version>

tempDir (string, REQUIRED)

Absolute path to the directory where Sarus will create a temporary folder
to expand layers when pulling and loading images

Recommended value: /tmp

localRepositoryBaseDir (string, REQUIRED)

Absolute base path to individual user directories, where Sarus will create
(if necessary) and access local image repositories. The repositories will be
located in <localRepositoryBaseDir>/<user name>/.sarus.

Recommended value: /home

centralizedRepositoryDir (string, OPTIONAL)

Absolute path to where Sarus will create (if necessary) and access the
system-wide centralized image repository. This repository is intended to satisfy
use cases where an image can only be broadcasted to the users, without allowing
them to pull the image directly (e.g. images that cannot be redistributed due to
licensing agreements).

The centralized repository is meant to be read-only for regular users, and its
contents should be modifiable only by the system administrators.

Recommended value: /var/sarus/centralized_repository

mksquashfsPath (string, REQUIRED)

Absolute path to trusted mksquashfs binary.
This executable must satisfy the security requirements for critical files and directories.

initPath (string, REQUIRED)

Absolute path to trusted init process static binary which will launch the
user-specified applications within the container when the --init option
to sarus run is used.
This executable must satisfy the security requirements for critical files and directories.

By default, within the container Sarus only executes the user-specified application,
which is assigned PID 1. The PID 1 process has unique features in Linux:
most notably, the process will ignore signals by default and zombie processes
will not be reaped inside the container (see
[1] [https://blog.phusion.nl/2015/01/20/docker-and-the-pid-1-zombie-reaping-problem/] ,
[2] [https://hackernoon.com/the-curious-case-of-pid-namespaces-1ce86b6bc900] for further reference).

Running the container application through an init system provides a solution for
signaling container applications or reaping processes of long-running containers.

The standalone package of Sarus uses tini [https://github.com/krallin/tini] as its default init process.

Warning

Some HPC applications may be subject to performance losses when run with an init process.
Our internal benchmarking tests with tini [https://github.com/krallin/tini] showed
overheads of up to 2%.

runcPath (string, REQUIRED)

Absolute path to trusted OCI-compliant runtime binary, which will be used by
Sarus to spawn the actual low-level container process.
This executable must satisfy the security requirements for critical files and directories.

ramFilesystemType (string, REQUIRED)

The type of temporary filesystem Sarus will use for setting up the base VFS
layer for the container. Must be either tmpfs or ramfs.

A filesystem of this type is created inside a dedicated mount namespace unshared
by Sarus for each container. The temporary filesystem thus generated will be
used as the location of the OCI bundle, including the subsequent mounts (loop,
overlay and, if requested, bind) that will form the container’s rootfs. The
in-memory and temporary nature of this filesystem helps with performance
and complete cleanup of all container resources once the Sarus process exits.

Warning

When running on Cray Compute Nodes (CLE 5.2 and 6.0), tmpfs will not work
and ramfs has to be used instead.

Recommended value: tmpfs

siteMounts (array, OPTIONAL)

List of JSON objects defining filesystem mounts that will be automatically
performed from the host system into the container bundle. This is typically
meant to make network filesystems accessible within the container but could be
used to allow certain other facilities.

Each object in the list must define the following fields:

	type (string): The type of the mount. Currently, only bind
(for bind-mounts) is supported.

	source (string): Absolute path to the host file/directory that
will be mounted into the container.

	destination (string): Absolute path to where the filesystem will be made
available inside the container.
If the directory does not exist, it will be created.

Bind mounts

In addition to type, source and destination, bind mounts can optionally
add the following field:

	flags (object, OPTIONAL): Object defining the flags for the bind mount.
Can have the following fields:

	readonly (string, empty value expected): Mount will be performed as
read-only.

By default, bind mounts will always be of recursive private flavor. Refer to the
Linux docs [https://www.kernel.org/doc/Documentation/filesystems/sharedsubtree.txt]
for more details.

General remarks

siteMounts are not subject to the limitations of user mounts requested
through the CLI. More specifically, these mounts:

	Can specify any path in the host system as source

	Can specify any path in the container as destination

It is not recommended to bind things under /usr or other common critical
paths within containers.

It is OK to perform this under /var or /opt or a novel path that your
site maintains (e.g. /scratch).

environment (object, OPTIONAL)

JSON object defining operations to be performed on the environment of the
container process. Can have four optional fields:

	set (array): List of JSON objects containing a single field, meant to
represent the key-value pair of an environment variable. The variables defined
here will be set in the container environment, possibly replacing any
previously existing variables with the same names.
Example:

{"CONTAINER_ENVIRONMENT_VARIABLE": "1"}

This can be useful to inform users applications and scripts that they are
running inside a Sarus container.

	prepend (array): List of JSON objects containing a single field, meant to
represent the key-value pair of an environment variable. The values will be
prepended to the corresponding variables in the container. For example, this
can be used to prepend site-specific locations to PATH.

	append (array): List of JSON objects containing a single field, meant to
represent the key-value pair of an environment variable. The values will be
appended to the corresponding variables in the container. For example, this
can be used to append site-specific locations to PATH.

	unset (array): List of strings representing environment variable names.
Variables with the corresponding names will be unset in the container.

userMounts (object, OPTIONAL)

Normal users have to possibility of requesting custom paths available to them
in the host environment to be mapped to another path inside the container.
This is achieved through the --mount option of sarus run.
The userMounts object offers the means to set limitations for this feature
through two arrays:

	notAllowedPrefixesOfPath: list of strings representing starting paths.
The user will not be able to enter these paths or any path under them as
a mount destination. Default set to ["/etc","/var","/opt/sarus"].

	notAllowedPaths: list of strings representing exact paths.
The user will not be able to enter these paths as a mount destination.
Default set to ["/opt"].

Both these fields and userMounts itself are optional: remove them to lift
any restriction.

These limitations apply only to mounts requested through the command line;
Mounts entered through siteMounts are not affected by them.

OCIHooks (object, OPTIONAL)

Object defining the hooks that will be called to customize the container. Must
use the format indicated in Configuring Sarus for OCI hooks. This object will be
copied without modifications by Sarus into the configuration file of the
generated OCI bundle. The hooks will effectively be called by the OCI-compliant
runtime specified by runcPath.

Example configuration file

{
 "securityChecks": true,
 "OCIBundleDir": "/var/sarus/OCIBundleDir",
 "rootfsFolder": "rootfs",
 "prefixDir": "/opt/sarus",
 "tempDir": "/tmp",
 "localRepositoryBaseDir": "/home",
 "centralizedRepositoryDir": "/var/sarus/centralized_repository",
 "mksquashfsPath": "/usr/sbin/mksquashfs",
 "runcPath": "/usr/local/sbin/runc.amd64",
 "ramFilesystemType": "tmpfs",
 "siteMounts": [
 {
 "type": "bind",
 "source": "/home",
 "destination": "/home",
 "flags": {}
 }
],
 "environment": {
 "set": [
 {"VAR_TO_SET_IN_CONTAINER": "value"}
],
 "prepend": [
 {"VAR_WITH_LIST_OF_PATHS_IN_CONTAINER": "/path/to/prepend"}
],
 "append": [
 {"VAR_WITH_LIST_OF_PATHS_IN_CONTAINER": "/path/to/append"}
],
 "unset": [
 "VAR_TO_UNSET_IN_CONTAINER_0",
 "VAR_TO_UNSET_IN_CONTAINER_1"
]
 },
 "userMounts": {
 "notAllowedPrefixesOfPath": [
 "/etc",
 "/var",
 "/opt/sarus"
],
 "notAllowedPaths": [
 "/opt"
]
 },
 "OCIHooks": {
 "prestart": [
 {
 "path": "/opt/sarus/bin/mpi_hook",
 "env": [
 "LDCONFIG_PATH=/sbin/ldconfig",
 "MPI_LIBS=/usr/lib64/mvapich2-2.2/lib/libmpi.so.12.0.5:/usr/lib64/mvapich2-2.2/lib/libmpicxx.so.12.0.5:/usr/lib64/mvapich2-2.2/lib/libmpifort.so.12.0.5",
 "MPI_DEPENDENCY_LIBS=",
 "BIND_MOUNTS="
]
 },
 {
 "path": "/opt/sarus/bin/nvidia-container-runtime-hook.amd64",
 "args": ["/opt/sarus/bin/nvidia-container-runtime-hook.amd64", "prestart"],
 "env": [
 "PATH=/usr/local/libnvidia-container_1.0.0-rc.2/bin",
 "LD_LIBRARY_PATH=/usr/local/libnvidia-container_1.0.0-rc.2/lib"
]
 }
]
 }
}

Configuring Sarus for OCI hooks

In order to extend the core functionality provided by a container runtime, the
OCI Runtime Specification allows for components to be hooked into the
container’s lifecycle, performing custom actions. These OCI hooks [https://github.com/opencontainers/runtime-spec/blob/master/config.md#posix-platform-hooks]
are especially amenable to HPC use cases, where the dedicated hardware and
highly-tuned software adopted by high-performance systems are in contrast with
the platform-agnostic nature of software containers. Effectively, OCI hooks
provide solutions for the container runtime to allow access to system-specific
features and specialized resources within container instances.

The enable the use of hooks in Sarus, the OCIHooks field in sarus.json
must be populated. The OCIHooks object will be copied as-is into the
configuration file of the OCI bundle generated by Sarus. The hooks will
effectively be called by the OCI-compliant runtime specified with the
runcPath parameter.

All the hooks entered in the configuration file must satisfy the security
requirements for critical files and
directories.

OCIHooks object format

The value of the OCIHooks field must be a JSON object with the same
format specified by the OCI Runtime Specification for configuring POSIX-platform
hooks. To ensure compatibility with the recommended OCI runtime (runc v1.0.0-rc5), we recommend the revision of the
specification at commit f3be7d2032 [https://github.com/opencontainers/runtime-spec/tree/f3be7d2032497e8b99c24f31eda583f30db0f91a].

A brief description of the format follows.

The OCIHooks object can contain any of the following properties:

	prestart (array of objects, OPTIONAL): array of prestart hooks.
Entries in the array contain the following properties:

	path (string, REQUIRED): absolute path to the hook program on the
host.

	args (array of strings, OPTIONAL): the elements of this list will be
passed to the hook as arguments. As such, the first list element
should be the hook program name.

	env (array of strings, OPTIONAL): list strings using the key=value
format, which will constitute the environment variables during hook
execution. The hook’s environment will only be populated with these
variables, and will not inherit anything from the runtime environment
or the container environment.

	timeout (int, OPTIONAL): the number of seconds before aborting the
hook. If set, must be greater than zero.

	poststart (array of objects, OPTIONAL): array of poststart hooks. Entries
have the same format as prestart entries.

	poststop (array of objects, OPTIONAL): array of poststop hooks. Entries
have the same format as prestart entries.

Hooks are programs which will be run before or after various events in the
lifecycle of the container. The hooks will be called by the runtime in the
listed order, and they will be executed in the runtime namespace (i.e. on the
host, and not inside the container). The state of the container will be passed
to hooks over stdin, as detailed in the OCI Runtime Spec [https://github.com/opencontainers/runtime-spec/blob/master/runtime.md#state].

Prestart hooks will be called after the container namespaces have been set up, but
before the user-specified program command is executed. These hooks provide an
opportunity to customize the container, for example with specific bind-mounts
or injecting non-standard resources.

Poststart hooks will be called immediately after the user-specified process
is executed. For example, this hook can notify the user that the container
process is spawned.

Poststop hooks will be called after the container is deleted but before the
container runtime exits. For example, this hook can notify the user that the
container process is spawned.

Hooks use cases

In the following pages, we will provide guidance on how to enable hooks
for specific use cases:

	Native MPI hook (MPICH-based)

	NVIDIA Container Toolkit

	Native glibc hook

	SSH hook

	Slurm global sync hook

	Timestamp hook

Native MPI hook (MPICH-based)

Sarus’s source code includes a hook able to import native MPICH-based
MPI implementations inside the container. This is useful in case the host system
features a vendor-specific or high-performance MPI stack based on MPICH (e.g.
Intel MPI, Cray MPI, MVAPICH) which is required to fully leverage a high-speed
interconnect.

When activated, the hook will enter the mount namespace of the container, search
for dynamically-linkable MPI libraries and replace them with functional
equivalents bind-mounted from the host system.

In order for the replacements to work seamlessly, the hook will check that the
host and container MPI implementations are ABI-compatible according to the
standards defined by the MPICH ABI Compatibility Initiative [https://www.mpich.org/abi/]. The Initiative is supported by several
MPICH-based implementations, among which MVAPICH, Intel MPI, and Cray MPT.
ABI compatibility and its implications are further discussed
here.

Hook installation

The hook is written in C++ and it will be compiled when building Sarus without
the need of additional dependencies. Sarus’s installation scripts will also
automatically install the hook in the $CMAKE_INSTALL_PREFIX/bin directory.
In short, no specific action is required to install the MPI hook.

Sarus configuration

The program is meant to be run as a prestart hook and does not accept
arguments, but its actions are controlled through a few environment variables:

	LDCONFIG_PATH: Absolute path to a trusted ldconfig
program on the host.

	MPI_LIBS: Colon separated list of full paths to the host’s
libraries that will substitute the container’s libraries. The ABI
compatibility check is performed by comparing the version numbers specified in
the libraries’ file names as follows:

	The major numbers (first from the left) must be equal.

	The host’s minor number (second from the left) must be greater or equal
to the container’s minor number. In case the minor number from the
container is greater than the host’s minor number, the hook will print
a warning but will proceed in the attempt to let the container
application run.

	If the host’s library name does not contain the version numbers or
contains only the major version number, the missing numbers are assumed
to be zero.

This compatibility check is in agreement with the MPICH ABI version number
schema.

	MPI_DEPENDENCY_LIBS: Colon separated list of absolute paths to
libraries that are dependencies of the MPI_LIBS. These libraries
are always bind mounted in the container under /usr/lib.

	BIND_MOUNTS: Colon separated list of absolute paths to generic
files or directories that are required for the correct functionality of the
host MPI implementation (e.g. specific device files). These resources will
be bind mounted inside the container with the same path they have on the host.

The following is an example OCIHooks object enabling the MPI hook:

{
 "prestart": [
 {
 "path": "/opt/sarus/bin/mpi_hook",
 "env": [
 "LDCONFIG_PATH=/sbin/ldconfig",
 "MPI_LIBS=/usr/lib64/mvapich2-2.2/lib/libmpi.so.12.0.5:/usr/lib64/mvapich2-2.2/lib/libmpicxx.so.12.0.5:/usr/lib64/mvapich2-2.2/lib/libmpifort.so.12.0.5",
 "MPI_DEPENDENCY_LIBS=",
 "BIND_MOUNTS="
]
 }
]
}

Sarus support at runtime

The hook alters the container filesystem only if the annotation com.hooks.mpi.enabled=true
is present in the config.json of the OCI bundle. The annotation is automatically generated by
Sarus if the --mpi command line option is passed to sarus run.

NVIDIA Container Toolkit

NVIDIA provides access to GPU devices and their driver stacks inside OCI
containers through an OCI hook called
NVIDIA Container Toolkit [https://github.com/NVIDIA/container-toolkit],
which acts as a driver for the
nvidia-container-cli [https://github.com/NVIDIA/libnvidia-container]
utility.

Dependencies

At least one NVIDIA GPU device and the NVIDIA CUDA Driver must be correctly
installed and working in the host system.

The hook depends on the library and utility provided by the libnvidia-container
project to carry out the low-level actions of importing the GPU device and
drivers inside the container. At the time of writing, the latest release of
libnvidia-container is version 1.0.6. The easiest way to install libnvidia-container
is to build from source on a Docker-enabled system and copy the binaries onto
the system where Sarus is installed:

ON SYSTEM WITH DOCKER

Clone the repository
$ git clone https://github.com/NVIDIA/libnvidia-container.git
$ cd libnvidia-container
$ git checkout v1.0.6

Build with Docker
It is possible to build using containers based on Ubuntu (16.04/18.04),
Debian (9/10), CentOS 7, OpenSUSE Leap 15.1 or Amazon Linux
$ make ubuntu18.04

Packages and a tarfile will be available in the dist/<distribution>/<arch>
directory
$ ls dist/ubuntu18.04/amd64

Copy tarfile to Sarus system
$ rsync -a dist/ubuntu18.04/amd64/libnvidia-container_1.0.6_amd64.tar.xz <user>@<target system with Sarus>

ON TARGET SYSTEM

Extract the archive and install the files
$ tar -xf libnvidia-container_1.0.6_amd64.tar.xz
$ cd libnvidia-container_1.0.6/usr/local/
$ sudo mkdir /usr/local/libnvidia-container_1.0.6
$ sudo cp -r * /usr/local/libnvidia-container_1.0.6

Hook installation

At the time of writing, the latest revision of the NVIDIA Container Toolkit
is commit 60f165ad69. NVIDIA no longer provides pre-built binaries for this
software, so it is necessary to build from source.

To do so, an installation of the Go programming language [https://golang.org/] is needed. System packages are available for major Linux
distributions, or you can follow the official documentation for manual
installation [https://golang.org/doc/install].

For a regular installation, the default Go working directory is $HOME/go.
Should you prefer a different location, remember to set it as the $GOPATH in
your environment.

You can now proceed to build the Toolkit from source:

$ go get github.com/NVIDIA/container-toolkit
$ cd $GOPATH/src/github.com/NVIDIA/container-toolkit/
$ git checkout 60f165ad69
$ cd $GOPATH
$ go build -ldflags "-s -w" -v github.com/NVIDIA/container-toolkit/nvidia-container-toolkit

Copy the hook binary to an installation directory
$ sudo cp $GOPATH/nvidia-container-toolkit /opt/sarus/bin/nvidia-container-toolkit-60f165ad69

To ensure correct functionality, the Toolkit also needs a TOML configuration file
to be present on the system, and will look for it in the default path
/etc/nvidia-container-runtime/config.toml, unless instructed otherwise.
The configuration file is platform specific (for example, it tells the hook
where to find the system’s ldconfig). NVIDIA provides basic flavors for
Ubuntu, Debian, CentOS, OpenSUSE Leap and Amazon Linux:

Install hook config.toml (e.g. for CentOS)
$ sudo mkdir /etc/nvidia-container-runtime/
$ sudo cp $GOPATH/src/github.com/NVIDIA/container-toolkit/config/config.toml.centos /etc/nvidia-container-runtime/config.toml

Sarus configuration

The NVIDIA Container Runtime hook is meant to run as a prestart hook. It
also expects to receive its own name/location as the first program argument, and
the string prestart as positional argument. Any other positional argument
will cause the hook to return immediately without performing any action.

The hook environment also needs to grant visibility to the library and utility
of libnvidia-container.

The following is an example OCIHooks object enabling the GPU hook:

{
 "prestart": [
 {
 "path": "/opt/sarus/bin/nvidia-container-toolkit-3.1.4",
 "args": ["/opt/sarus/bin/nvidia-container-toolkit-3.1.4", "prestart"],
 "env": [
 "PATH=/usr/local/libnvidia-container_1.0.6/bin",
 "LD_LIBRARY_PATH=/usr/local/libnvidia-container_1.0.6/lib"
]
 }
]
}

If you installed the configuration file in a custom location, you can
enter the -config=/path/to/config.toml flag before the prestart
positional argument. For example:

{
 "prestart": [
 {
 "path": "/opt/sarus/bin/nvidia-container-toolkit-3.1.4",
 "args": ["/opt/sarus/bin/nvidia-container-toolkit-3.1.4", "-config=/opt/sarus/etc/nvidia-hook-config.toml", "prestart"],
 "env": [
 "PATH=/usr/local/libnvidia-container_1.0.6/bin",
 "LD_LIBRARY_PATH=/usr/local/libnvidia-container_1.0.6/lib"
]
 }
]
}

Sarus support at runtime

The actions performed by the NVIDIA Container Toolkit hook are controlled via a
set of specific environment variables [https://github.com/NVIDIA/nvidia-container-runtime#environment-variables-oci-spec].
Most of these can (and should) come from the container images, or from the
Environmental Transfer performed by Sarus. Notably, the
NVIDIA_VISIBLE_DEVICES variable defines which GPUs will be made accessible
inside the container by the hook.

However, in an HPC scenario, the hardware resources should be assigned from a
supervisory entity, such as a workload manager. For example, the SLURM workload
manager Generic Resource Scheduling (GRES) plugin selects which GPU devices are
assigned to a job by setting the CUDA_VISIBLE_DEVICES environment variable
inside the job process.

For this reason, when preparing a container Sarus will look for
CUDA_VISIBLE_DEVICES in the host environment, and modify accordingly both
NVIDIA_VISIBLE_DEVICES and CUDA_VISIBLE_DEVICES in the container.
These modifications ensure that the host resource allocations are respected,
while guaranteeing the correct operation of CUDA applications inside the
container, even in the case of partial or shuffled devices selection on
multi-GPU systems.

Native glibc hook

Sarus’s source code includes a hook able to inject glibc libraries from the
host inside the container, overriding the glibc of the container.

This is useful in case that we need to upgrade the container’s glibc to a newer
version. For example, when we want to inject a host’s library inside the container
(e.g. MPI), but the host’s library relies on a newer glibc than the container’s one.

When activated, the hook will enter the mount namespace of the container, search
for dynamically-linkable glibc libraries and replace them with functional
equivalents bind-mounted from the host system.

In order for the replacements to work seamlessly, the hook does the following:

	Compare glibc versions of host and container. The container’s libraries are only
replaced when they are older than the host’s libraries.

	Check ABI compatibility between host and container glibc.
Host and container glibc libraries must have the same soname.

Hook installation

The hook is written in C++ and it will be compiled when building Sarus without
the need of additional dependencies. Sarus’s installation scripts will also
automatically install the hook in the $CMAKE_INSTALL_PREFIX/bin directory.
In short, no specific action is required to install the glibc hook.

Sarus configuration

The program is meant to be run as a prestart hook and does not accept
arguments, but its actions are controlled through a few environment variables:

	GLIBC_LIBS: Colon separated list of full paths to the host’s glibc
libraries that will substitute the container’s libraries.

	LDCONFIG_PATH: Absolute path to a trusted ldconfig
program on the host.

	READELF_PATH: Absolute path to a trusted readelf
program on the host.

The following is an example OCIHooks object enabling the glibc hook:

{
 "prestart": [
 {
 "path": "/opt/sarus/bin/glibc_hook",
 "env": [
 "LDCONFIG_PATH=/sbin/ldconfig",
 "READELF_PATH=/usr/bin/readelf",
 "GLIBC_LIBS=/lib64/libSegFault.so:/lib64/librt.so.1:/lib64/libnss_dns.so.2:/lib64/libanl.so.1:/lib64/libresolv.so.2:/lib64/libnsl.so.1:/lib64/libBrokenLocale.so.1:/lib64/ld-linux-x86-64.so.2:/lib64/libnss_hesiod.so.2:/lib64/libutil.so.1:/lib64/libnss_files.so.2:/lib64/libnss_compat.so.2:/lib64/libnss_db.so.2:/lib64/libm.so.6:/lib64/libcrypt.so.1:/lib64/libc.so.6:/lib64/libpthread.so.0:/lib64/libdl.so.2:/lib64/libmvec.so.1:/lib64/libthread_db.so.1"
]
 }
]
}

Sarus support at runtime

The glibc hook injects the host glibc in the container filesystem only if the annotation
com.hooks.glibc.enabled=true is present in the config.json of the OCI bundle.
The annotation is automatically generated by Sarus if the --glibc or
--mpi command line options are passed to sarus run.

SSH hook

Sarus also includes the source code for a hook capable of enabling SSH
connections inside containers. The SSH hook is an executable binary that
performs different ssh-related operations depending on the argument it
receives from the runtime. For the full details about the implementation and
inner workings, please refer to the related developer documentation.

Hook installation

The hook is written in C++ and it will be compiled along with Sarus if the
ENABLE_SSH=TRUE CMake option has been used when configuring the build (the
option is enabled by default). The Sarus installation scripts will also
automatically install the hook in the <CMAKE_INSTALL_PREFIX>/bin directory.

A custom OpenSSH software will also be built and installed in the
<CMAKE_INSTALL_PREFIX>/openssh directory. This directory must satisfy the
security requirements for critical
files and directories.

Sarus configuration

The SSH hook must be configured to run as a prestart hook. It expects to
receive its own name/location as the first argument, and the string
start-sshd as positional argument. In addition, the following
environment variables must be defined:

	HOOK_BASE_DIR: Absolute base path to the directory where the hook will create and access the SSH keys.
The keys directory will be located in <HOOK_BASE_DIR>/<username>/.oci-hooks/ssh/keys.

	PASSWD_FILE: Absolute path to a password file (PASSWD(5)).
The file is used by the hook to retrieve the username of the user.

	OPENSSH_DIR: Absolute path to the location of the custom OpenSSH software.

The following is an example OCIHooks object enabling the SSH hook:

{
 "prestart": [
 {
 "path": "/opt/sarus/bin/ssh_hook",
 "env": [
 "HOOK_BASE_DIR=/home",
 "PASSWD_FILE=/opt/sarus/etc/passwd",
 "OPENSSH_DIR=/opt/sarus/openssh"
],
 "args": [
 "ssh_hook",
 "start-sshd"
]
 }
]
}

Sarus support at runtime

The command sarus ssh-keygen will call the hook without creating a
container, passing the appropriate arguments to generate dedicated keys to be
used by containers.

The hook bind-mounts the custom OpenSSH software and starts the sshd daemon only if the
annotation com.hooks.ssh.enabled=true is present in the config.json of the OCI bundle.
The annotation is automatically generated by Sarus if the --ssh
command line option is passed to sarus run.

Slurm global sync hook

Sarus also includes the source code for a hook specifically targeting the Slurm
Workload Manager. This hook synchronizes the startup of containers launched
through Slurm, ensuring that all Slurm nodes have spawned a container before
starting the user-requested application in any of them. This kind of
synchronization is useful, for example, when used in conjunction with the
SSH hook: if the containers are not all available,
some of them might try to establish connections with containers that have yet to
start, causing the whole job step execution to fail.

When activated, the hook will retrieve information about the current Slurm job
step and node by reading three environment variables: SLURM_JOB_ID,
SLURM_NTASKS and SLURM_PROCID. The hook will then create a job-specific
synchronization directory inside the Sarus local repository of the user. Inside
the synchronization directory, two subdirectories will be created: arrival
and departure. In the arrival directory each hook from a Slurm task will
create a file with its Slurm process ID as part of the filename, then
periodically check if files from all other Slurm tasks are present in the
directory. The check is performed every 0.1 seconds. When all processes have
signaled their arrival by creating a file, the hooks proceed to signal their
departure by creating a file in the departure directory, and then exit the
hook program. The hook associated with the Slurm process ID 0 waits for all
other hooks to depart and then cleans up the synchronization directory.

The arrival/departure strategy has been implemented to prevent edge-case race
conditions: for example, if the file from the last arriving hook is detected and
the cleanup started before the last arriving hook has checked for the presence
of all other files, this situation would result in the deadlock of the last
arriving hook. Having all hooks signal their departure before cleaning up
the synchronization directory avoids this problem.

Hook installation

The hook is written in C++ and it will be compiled when building Sarus without
the need of additional dependencies. Sarus’s installation scripts will also
automatically install the hook in the $CMAKE_INSTALL_PREFIX/bin directory.
In short, no specific action is required to install the Slurm global sync hook.

Sarus configuration

The program is meant to be run as a prestart hook and does not accept any
argument. The following environment variables must be defined:

	HOOK_BASE_DIR: Absolute base path to the directory where the hook will create and access the synchronization
files. The sync directory will be located in <HOOK_BASE_DIR>/<username>/.oci-hooks/slurm-global-sync.

	PASSWD_FILE: Absolute path to a password file (PASSWD(5)).
The file is used by the hook to retrieve the username of the user.

The following is an example OCIHooks object enabling the MPI hook:

{
 "prestart": [
 {
 "path": "/opt/sarus/bin/slurm_global_sync_hook",
 "env": [
 "HOOK_BASE_DIR=/home",
 "PASSWD_FILE=/opt/sarus/etc/passwd"
]
 }
]
}

Sarus support at runtime

The hook alters the container filesystem only if the annotation com.hooks.slurm-global-sync.enabled=true
is present in the config.json of the OCI bundle. The annotation is automatically generated by Sarus if the
--ssh command line option is passed to sarus run to make sure that containers will not attempt
to ssh into other containers that have yet to start.

Timestamp hook

The OCI specifications do not define any requirement on exposing information
about the inner workings of runtimes and hooks to the user. This can make
determining the startup overhead of a standard container runtime difficult.

Sarus bundles a hook which leaves a timestamp on a logfile, accompanied by a
configurable message. Since the OCI Runtime Specification mandates hooks to be
executed in the order they are entered during configuration, interleaving this
hook between other hooks generates useful data to measure the time spent by each
component.

The timestamp has the following format:

[<UNIX time in seconds.nanoseconds>] [<hostname>-<hook PID>] [hook] [INFO] Timestamp hook: <optional configurable message>

The following is an actual timestamp example:

[1552438146.449463] [nid07641-16741] [hook] [INFO] Timestamp hook: After-runc

This hook does not alter the container in any way, and is primarily meant as a
tool for developers and system administrators working with OCI hooks.

Hook installation

The hook is written in C++ and it will be compiled when building Sarus without
the need of additional dependencies. Sarus’s installation scripts will also
automatically install the hook in the $CMAKE_INSTALL_PREFIX/bin directory.
In short, no specific action is required to install the Timestamp hook.

Sarus configuration

The Timestamp hook can be configured to run at any of the container lifecycle
phases supported for hook execution (prestart, poststart, poststop), since it is
not tied to the workings of other hooks or the container application.

The hook optionally supports the following environment variable:

	TIMESTAMP_HOOK_MESSAGE: String to display as part of the timestamp printed
to the target file. This variable is optional, and it is meant to differentiate
between subsequent invocations of the timestamp hook for the same container.

The following is an example OCIHooks object enabling the Timestamp hook:

{
 "prestart": [
 {
 "path": "/opt/sarus/bin/timestamp_hook",
 "env": [
 "TIMESTAMP_HOOK_MESSAGE=After-runc"
]
 }
]
}

As mentioned above, the real value of the Timestamp hook lies in interleaving it
between other hooks in order to have a measurement of the elapsed time.
For example, using other hooks described in this documentation:

{
 "prestart": [
 {
 "path": "/opt/sarus/bin/timestamp_hook",
 "env": [
 "TIMESTAMP_HOOK_MESSAGE=After-runc"
]
 },
 {
 "path": "/opt/sarus/bin/nvidia-container-runtime-hook",
 "args": ["nvidia-container-runtime-hook", "-config=/opt/sarus/etc/nvidia-hook-config.toml", "prestart"],
 "env": [
 "PATH=/usr/local/libnvidia-container_1.0.0-rc.2/bin",
 "LD_LIBRARY_PATH=/usr/local/libnvidia-container_1.0.0-rc.2/lib"
]
 },
 {
 "path": "/opt/sarus/bin/timestamp_hook",
 "env": [
 "TIMESTAMP_HOOK_MESSAGE=After-NVIDIA-hook"
]
 },
 {
 "path": "/opt/sarus/bin/mpi_hook",
 "env": [
 "MPI_LIBS=/usr/lib64/mvapich2-2.2/lib/libmpi.so.12.0.5:/usr/lib64/mvapich2-2.2/lib/libmpicxx.so.12.0.5:/usr/lib64/mvapich2-2.2/lib/libmpifort.so.12.0.5",
 "MPI_DEPENDENCY_LIBS=",
 "BIND_MOUNTS=",
 "PATH=/sbin"
]
 },
 {
 "path": "/opt/sarus/bin/timestamp_hook",
 "env": [
 "TIMESTAMP_HOOK_MESSAGE=After-MPI-hook"
]
 },
 {
 "path": "/opt/sarus/bin/ssh_hook",
 "env": [
 "HOOK_BASE_DIR=/home",
 "PASSWD_FILE=/opt/sarus/etc/passwd",
 "OPENSSH_DIR=/opt/sarus/openssh"
],
 "args": [
 "ssh_hook",
 "start-sshd"
]
 },
 {
 "path": "/opt/sarus/bin/timestamp_hook",
 "env": [
 "TIMESTAMP_HOOK_MESSAGE=After-SSH-hook"
]
 },
 {
 "path": "/opt/sarus/bin/slurm_global_sync_hook",
 "env": [
 "HOOK_BASE_DIR=/home",
 "PASSWD_FILE=/opt/sarus/etc/passwd"
]
 },
 {
 "path": "/opt/sarus/bin/timestamp_hook",
 "env": [
 "TIMESTAMP_HOOK_MESSAGE=After-SLURM-sync-hook"
]
 }
]
}

The previous example would produce an output in the logfile like the following:

[1552438146.449463] [nid07641-16741] [hook] [INFO] Timestamp hook: After-runc
[1552438147.334070] [nid07641-16752] [hook] [INFO] Timestamp hook: After-NVIDIA-hook
[1552438147.463971] [nid07641-16760] [hook] [INFO] Timestamp hook: After-MPI-hook
[1552438147.502217] [nid07641-16762] [hook] [INFO] Timestamp hook: After-SSH-hook
[1552438147.624725] [nid07641-16768] [hook] [INFO] Timestamp hook: After-SLURM-sync-hook

Sarus support at runtime

The hook is activated by setting the TIMESTAMP_HOOK_LOGFILE variable in the
container environment to the absolute path to the logfile where the hook has
to print its timestamp. Note that the target logfile does not need to exist in
the container’s filesystem, since the OCI Runtime Specification mandates hooks
to execute in the runtime namespace.
If the variable is not set, the hook exits without performing any action.

When launching jobs with many containers (e.g. for an MPI application), it is
advisable to point the Timestamp hook to a different file for each container, in
order to avoid filesystem contention and obtain cleaner measurements. The
following example shows one way to achieve this in a batch script for the Slurm
Workload Manager.

#!/usr/bin/env bash
#SBATCH --job-name="sarus"
#SBATCH --nodes=<NNODES>
#SBATCH --ntasks-per-node=<NTASKS_PER_NODE>
#SBATCH --output=job.out
#SBATCH --time=00:05:00

echo "SLURM_JOBID="$SLURM_JOBID

echo "START_TIME=`date +%s`"

srun bash -c 'file=<JOB_DIR>/out.procid_${SLURM_PROCID}; TIMESTAMP_HOOK_LOGFILE=${file}.timestamp-hook sarus --verbose run --mpi <image> <application> &>${file}.sarus'

echo "END_TIME=`date +%s`"

The Timestamp hook does not require any direct support from the Sarus container
engine, although it relies on the environmental transfer performed by Sarus to propagate the
TIMESTAMP_HOOK_LOGFILE variable from the host into the container
environment, allowing the hook to work as intended by the user.

User guides

	User guide
	Basic end-to-end user workflow

	Additional features

	Support for container customization through hooks

	Running MPI applications without the native MPI hook

	ABI compatibility and its implications

	Creating custom Docker images with CUDA
	Installing the CUDA Toolkit

	Controlling the NVIDIA Container Runtime

User guide

Basic end-to-end user workflow

Steps to do on your workstation:

	Build the container image using the Docker tool and Dockerfiles.

	Push the Docker image into Docker Hub registry (https://hub.docker.com).

Steps to do on the HPC system:

	Pull the Docker image from the Docker Hub registry using Sarus.

	Run the image at scale with Sarus.

An explanation of the different steps required to deploy a Docker image using
Sarus follows.

1. Develop the Docker image

First, the user has to build a container image. This boils down to
writing a Dockerfile that describes the container, executing the Docker
command line tool to build the image, and then running the container to
test it. Below you can find an overview of what the development process
looks like. We provide a brief introduction to using Docker, however,
for a detailed explanation please refer to the Docker Get Started
guide [https://docs.docker.com/engine/getstarted/].

Let’s start with a simple example. Consider the following Dockerfile
where we install Python on a Debian Jessie base image:

FROM debian:jessie
RUN apt-get -y update && apt-get install -y python

Once that the user has written the Dockerfile, the container
image can be built:

$ docker build -t hello-python .

The previous step will take the content of the Dockerfile and build our
container image. The first entry, FROM debian:jessie, will specify a base
Linux distribution image as a starting point for our container (in this case,
Debian Jessie), the image of which Docker will try to fetch from its registry if
it is not already locally available. The second entry RUN apt-get -y update &&
apt-get install -y python will execute the command that follows the RUN
instruction, updating the container with the changes done to its software
environment: in this case, we are installing Python using the apt-get package
manager.

Once the build step has finished, we can list the available container
images using:

$ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
hello-python latest 2e57316387c6 3 minutes ago 224 MB

We can now spawn a container from the image we just built (tagged as
hello-python), and run Python inside the container
(python --version), so as to verify the version of the installed
interpreter:

$ docker run --rm hello-python python --version
Python 2.7.9

One of the conveniences of building containers with Docker is that this
process can be carried out solely on the user’s workstation/laptop,
enabling quick iterations of building, modifying, and testing of
containerized applications that can then be easily deployed on a variety
of systems, greatly improving user productivity.

Note

Reducing the size of the container image, besides saving disk space,
also speeds up the process of importing it into Sarus later on.
The easiest ways to limit image size are cleaning the package manager cache
after installations and deleting source codes and other intermediate build
artifacts when building software manually.
For practical examples and general good advice on writing Dockerfiles,
please refer to the official Best practices for writing Dockerfiles [https://docs.docker.com/engine/userguide/eng-image/dockerfile_best-practices/].

A user can also access the container interactively through a shell,
enabling quick testing of commands. This can be a useful step for
evaluating commands before adding them to the Dockerfile:

$ docker run --rm -it hello-python bash
root@c5fc1954b19d:/# python --version
Python 2.7.9
root@c5fc1954b19d:/#

2. Push the Docker image to the Docker Hub

Once the image has been built and tested, you can log in to DockerHub [https://hub.docker.com/]
(requires an account) and push it, so that it becomes available from the cloud:

$ docker login
$ docker push <user name>/<repo name>:<image tag>

Note that in order for the push to succeed, the image has to be
correctly tagged with the same <repository name>/<image name>:<image tag>
identifier you intend to push to. Images can be tagged at build-time, supplying
the -t option to docker build, or afterwards by using
docker tag. In the case of our example:

$ docker tag hello-python <repo name>/hello-python:1.0

The image tag (the last part of the identifier after the colon) is optional.
If absent, Docker will set the tag to latest by default.

3. Pull the Docker image from Docker Hub

Now the image is stored in the Docker Hub and you can pull it into the HPC
system using the sarus pull command followed by the image
identifier:

$ sarus pull <repo name>/hello-python:1.0

While performing the pull does not require specific privileges, it is generally
advisable to run sarus pull on the system’s compute nodes through
the workload manager: compute nodes often have better hardware and, in some
cases like Cray XC systems, large RAM filesystems, which will greatly reduce
the pull process time and will allow to pull larger images.

Should you run into problems because the pulled image doesn’t fit in the default
filesystem, you can specify an alternative temporary directory with the
--temp-dir option.

You can use sarus images to list the images available on the system:

$ sarus images
REPOSITORY TAG DIGEST CREATED SIZE SERVER
<repo name>/hello-python 1.0 6bc9d2cd1831 2018-01-19T09:43:04 40.16MB index.docker.io

4. Run the image at scale with Sarus

Once the image is available to Sarus we can run it at scale using the workload
manager. For example, if using SLURM:

$ srun -N 1 sarus run <repo name>/hello-python:1.0 python --version
Python 2.7.9

As with Docker, containers can also be used through a terminal,
enabling quick testing of commands:

$ srun -N 1 --pty sarus run -t debian bash
$ cat /etc/os-release
PRETTY_NAME="Debian GNU/Linux 9 (stretch)"
NAME="Debian GNU/Linux"
VERSION_ID="9"
VERSION="9 (stretch)"
ID=debian
HOME_URL="https://www.debian.org/"
SUPPORT_URL="https://www.debian.org/support"
BUG_REPORT_URL="https://bugs.debian.org/"

$ exit

The --pty option to srun and the -t/--tty option to sarus run
are needed to properly setup the pseudo-terminals in order to achieve a familiar
user experience.

You can tell the previous example was run inside a container by querying the
specifications of your host system. For example, the OS of Cray XC compute nodes
is based on SLES and not Debian:

$ srun -N 1 cat /etc/os-release
NAME="SLES"
VERSION="12"
VERSION_ID="12"
PRETTY_NAME="SUSE Linux Enterprise Server 12"
ID="sles"
ANSI_COLOR="0;32"
CPE_NAME="cpe:/o:suse:sles:12"

Additional features

Pulling images from private or 3rd party registries

By default, Sarus tries to pull images from DockerHub [https://hub.docker.com/]
public repositories. To perform a pull from a private repository, use the
--login option to the sarus pull command and enter your
credentials:

$ srun -N 1 sarus pull --login <privateRepo>/<image>:<tag>
username :user
password :
...

To pull an image from a registry different from Docker Hub, enter the server
address as part of the image identifier. For example, to access the NVIDIA GPU
Cloud:

$ srun -N 1 sarus pull --login nvcr.io/nvidia/k8s/cuda-sample:nbody
username :$oauthtoken
password :
...

To work with images not pulled from Docker Hub (including the removal detailed
in a later section), you need to enter the image descriptor (repository[:tag])
as displayed by the sarus images command in the first two columns:

$ sarus images
REPOSITORY TAG DIGEST CREATED SIZE SERVER
nvcr.io/nvidia/k8s/cuda-sample nbody 29e2298d9f71 2019-01-14T12:22:25 91.88MB nvcr.io

$ srun -N1 sarus run nvcr.io/nvidia/k8s/cuda-sample:nbody cat /usr/local/cuda/version.txt
CUDA Version 9.0.176

Note

Sarus has been designed to be compatible with Docker Hub, including its
specific authentication scheme. To work with registries which adopt different
authentication procedures under the hood (like the Google Container Registry),
it is advised to complement Sarus with software provided by the container
community like Skopeo (https://github.com/containers/skopeo).
Skopeo is a highly versatile tool to work with container registries.

As an example, to download a GCR image requiring authentication credentials
into a tar file using the skopeo copy command
(https://github.com/containers/skopeo/blob/master/docs/skopeo-copy.1.md):

$ skopeo copy –src-creds=<user>:<password>
docker://gcr.io/<image>:<tag> docker-archive:<path>.tar

Skopeo should be able to authenticate either with username/password or with
access token (in this case enter oauth2accesstoken as the username and
the token as the password in the --src-creds option). More details are
available in the Skopeo documentation [https://github.com/containers/skopeo/tree/master/docs].

Once Skopeo has downloaded the image as a tar file, the image can be
loaded into Sarus with the sarus load command.

Loading images from tar archives

If you do not have access to a remote Docker registry, or you’re uncomfortable
with uploading your images to the cloud in order to pull them, Sarus offers
the possibility to load images from tar archives generated by
docker save [https://docs.docker.com/engine/reference/commandline/save/].

First, save an image to a tar archive using Docker on your workstation:

$ docker save --output debian.tar debian:jessie
$ ls -sh
total 124M
124M debian.tar

Then, transfer the archive to the HPC system and use the sarus load
command, followed by the archive filename and the descriptor you want to give to
the Sarus image:

$ sarus images
REPOSITORY TAG DIGEST CREATED SIZE SERVER

$ srun sarus load ./debian.tar my_debian
> expand image layers ...
> extracting : /tmp/debian.tar/7e5c6402903b327fc62d1144f247c91c8e85c6f7b64903b8be289828285d502e/layer.tar
> make squashfs ...
> create metadata ...
created: <user home>/.sarus/images/load/library/my_debian/latest.squashfs
created: <user home>/.sarus/images/load/library/my_debian/latest.meta

$ sarus images
REPOSITORY TAG DIGEST CREATED SIZE SERVER
load/library/my_debian latest 2fe79f06fa6d 2018-01-31T15:08:56 47.04MB load

The image is now ready to use. Notice that the origin server for the image has
been labeled load to indicate this image has been loaded from an archive.

Similarly to sarus pull, we recommend to load tar archives from
compute nodes. Should you run out of space while expanding the image,
sarus load also accepts the --temp-dir option to specify an
alternative expansion directory.

As with images from 3rd party registries, to use or remove loaded images you
need to enter the image descriptor (repository[:tag]) as displayed by the
sarus images command in the first two columns.

Removing images

To remove an image from Sarus’s local repository, use the sarus
rmi command:

$ sarus images
REPOSITORY TAG DIGEST CREATED SIZE SERVER
library/debian latest 6bc9d2cd1831 2018-01-31T14:11:27 40.17MB index.docker.io

$ sarus rmi debian:latest
removed index.docker.io/library/debian/latest

$ sarus images
REPOSITORY TAG DIGEST CREATED SIZE SERVER

To remove images pulled from 3rd party registries or images loaded from local
tar archives you need to enter the image descriptor (repository[:tag]) as
displayed by the sarus images command:

$ sarus images
REPOSITORY TAG DIGEST CREATED SIZE SERVER
load/library/my_debian latest 2fe79f06fa6d 2018-01-31T15:08:56 47.04MB load

$ sarus rmi load/library/my_debian
removed load/library/my_debian/latest

Accessing host directories from the container

System administrators can configure Sarus to automatically mount facilities
like parallel filesystems into every container. Refer to your site documentation
or system administrator to know which resources have been enabled on a specific
system.

Environmental Transfer

All the environment variables defined in the host process environment
will be transferred into the container; however, any environment variables
defined in the container image, e.g., Docker ENV-defined variables,
will be sourced and override those.

Mounting custom directories into the container

By default, Sarus creates the container filesystem environment from the image
and host system as specified by the system administrator.
It is possible to request additional paths from the host environment to be
mapped to some other path within the container using the --mount option of
the sarus run command:

$ srun -N 1 --pty sarus run --mount=type=bind,source=/path/to/my/data,destination=/data -t debian bash

The previous command would cause /path/to/my/data on the host to be mounted
as /data within the container. This mount option can be specified multiple
times, one for each mount to be performed.
--mount accepts a comma-separated list of <key>=<value> pairs as its
argument, much alike the Docker option with the same name (for reference, see
the official Docker documentation on bind mounts [https://docs.docker.com/engine/admin/volumes/bind-mounts/]). As with Docker,
the order of the keys is not significant. A detailed breakdown of the possible
flags follows in the next subsections.

Mandatory flags

	type: represents the type of the mount. Currently, only bind
(for bind-mounts) is supported.

	source (required): Absolute path accessible from the user on the host
that will be mounted in the container. Can alternatively be specified as src.

	destination: Absolute path to where the filesystem will be made available
inside the container. If the directory does not exist, it will be created.
It is possible to overwrite other bind mounts already present in the
container, however, the system administrator retains the power to disallow
user-requested mounts to any location at his/her discretion.
May alternatively be specified as dst or target.

Bind mounts

In addition to the mandatory flags, regular bind mounts can optionally
add the following flag:

	readonly (optional): Causes the filesystem to be mounted as read-only.
This flag takes no value.

The following example demonstrates the use of a custom read-only bind mount.

$ ls -l /input_data
drwxr-xr-x. 2 root root 57 Feb 7 10:49 ./
drwxr-xr-x. 23 root root 4096 Feb 7 10:49 ../
-rw-r--r--. 1 root root 1048576 Feb 7 10:49 data1.csv
-rw-r--r--. 1 root root 1048576 Feb 7 10:49 data2.csv
-rw-r--r--. 1 root root 1048576 Feb 7 10:49 data3.csv

$ echo "1,2,3,4,5" > data4.csv

$ srun -N 1 --pty sarus run --mount=type=bind,source=/input_data,destination=/input,readonly -t debian bash
$ ls -l /input
-rw-r--r--. 1 root 0 1048576 Feb 7 10:49 data1.csv
-rw-r--r--. 1 root 0 1048576 Feb 7 10:49 data2.csv
-rw-r--r--. 1 root 0 1048576 Feb 7 10:49 data3.csv
-rw-r--r--. 1 root 0 10 Feb 7 10:52 data4.csv

$ cat /input/data4.csv
1,2,3,4,5

$ touch /input/data5.csv
touch: cannot touch '/input/data5.csv': Read-only file system

$ exit

Image entrypoint and default arguments

Sarus fully supports image entrypoints and default arguments as defined by the
OCI Image Specification [https://github.com/opencontainers/image-spec].

The entrypoint of an image is a list of arguments that will be used as the
command to execute when the container starts; it is meant to create an image
that will behave like an executable file.

The image default arguments will be passed to the entrypoint if no argument is
provided on the commmand line when launching a container. If the entrypoint is
not present, the first default argument will be treated as the executable to
run.

When creating container images with Docker, the entrypoint and default arguments
are set using the ENTRYPOINT [https://docs.docker.com/engine/reference/builder/#entrypoint] and CMD [https://docs.docker.com/engine/reference/builder/#cmd] instructions
respectively in the Dockerfile. For example, this file will generate an image
printing arguments to the terminal by default:

FROM debian:stretch

ENTRYPOINT ["/bin/echo"]
CMD ["Hello world"]

After building such image (we’ll arbitrarily call it echo) and importing it
into Sarus, we can run it without passing any argument:

$ srun sarus run <image repo>/echo
Hello world

Entering a command line argument will override the default arguments passed to
the entrypoint:

$ srun sarus run <image repo>/echo Foobar
Foobar

The image entrypoint can be changed by providing a value to the --entrypoint
option of sarus run. It is important to note that when changing the
entrypoint the default arguments get discarded as well:

$ srun sarus run --entrypoint=cat <image repo>/echo /etc/os-release
PRETTY_NAME="Debian GNU/Linux 9 (stretch)"
NAME="Debian GNU/Linux"
VERSION_ID="9"
VERSION="9 (stretch)"
ID=debian
HOME_URL="https://www.debian.org/"
SUPPORT_URL="https://www.debian.org/support"
BUG_REPORT_URL="https://bugs.debian.org/"

The entrypoint can be removed by using --entrypoint without arguments. This
is useful, for example, for inspecting and debugging containers:

$ srun --pty sarus run --entrypoint -t <image repo>/echo bash
$ env | grep ^PATH
PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin

$ exit

Working directory

The working directory inside the container can be controlled using the
-w/--workdir option of the sarus run command:

$ srun -N 1 --pty sarus run --workdir=/path/to/workdir -t debian bash

If the path does not exist, it is created inside the container.

If the -w/--workdir option is not specified but the image defines
a working directory, the container process will start
there. Otherwise, the process will start in the container’s root directory (/).
Using image-defined working directories can be useful, for example, for
simplifying the command line when launching containers.

When creating images with Docker, the working directory is set using the
WORKDIR [https://docs.docker.com/engine/reference/builder/#workdir]
instruction in the Dockerfile.

Adding an init process to the container

By default, within the container Sarus only executes the user-specified application,
which is assigned PID 1 in the container’s PID namespace. The PID 1 process has unique
features in Linux: most notably, the process will ignore signals by default and zombie
processes will not be reaped inside the container (see
[1] [https://blog.phusion.nl/2015/01/20/docker-and-the-pid-1-zombie-reaping-problem/] ,
[2] [https://hackernoon.com/the-curious-case-of-pid-namespaces-1ce86b6bc900] for further reference).

If you need to handle signals or reap zombie processes (which can be useful when
executing several different processes in long-running containers), you can use the
--init option to run an init process inside the container:

$ srun -N 1 sarus run --init alpine:3.8 ps -o pid,comm
PID COMMAND
 1 init
 8 ps

Sarus uses tini [https://github.com/krallin/tini] as its default init process.

Warning

Some HPC applications may be subject to performance losses when run with an init process.
Our internal benchmarking tests with tini [https://github.com/krallin/tini] showed
overheads of up to 2%.

Verbosity levels and help messages

To run a command in verbose mode, enter the --verbose global option before
the command:

$ srun sarus --verbose run debian:latest cat /etc/os-release

To run a command printing extensive details about internal workings, enter the --debug global
option before the command:

$ srun sarus --debug run debian:latest cat /etc/os-release

To print a general help message about Sarus, use sarus --help.

To print information about a command (e.g. command-specific options), use
sarus help <command>:

$ sarus help run
Usage: sarus run [OPTIONS] REPOSITORY[:TAG] [COMMAND] [ARG...]

Run a command in a new container

Note: REPOSITORY[:TAG] has to be specified as
 displayed by the "sarus images" command.

Options:
 --centralized-repository Use centralized repository instead of the local one
 -t [--tty] Allocate a pseudo-TTY in the container
 --entrypoint arg Overwrite the default ENTRYPOINT of the image
 --mount arg Mount custom directories into the container
 -m [--mpi] Enable MPI support
 --ssh Enable SSH in the container

Support for container customization through hooks

Sarus allows containers to be customized by other programs or scripts
leveraging the interface defined by the Open Container Initiative Runtime
Specification for POSIX-platform hooks (OCI hooks for short). These
customizations are especially amenable to HPC use cases, where the dedicated
hardware and highly-tuned software adopted by high-performance systems are in
contrast with the platform-agnostic nature of software containers. OCI hooks
provide a solution to open access to these resources inside containers.

The hooks that will be enabled on a given Sarus installation are configured
by the system administrators. Please refer to your site documentation or your
system administrator to know which hooks are available in a specific system and
how to activate them.

Here we will illustrate a few cases of general interest for HPC from an end-user
perspective.

Native MPI support (MPICH-based)

Sarus comes with a hook able to import native MPICH-based MPI implementations
inside the container. This is useful in case the host system features a
vendor-specific or high-performance MPI stack based on MPICH (e.g. Intel MPI,
Cray MPT, MVAPICH) which is required to fully leverage a high-speed
interconnect.

To take advantage of this feature, the MPI installed in the container (and
dynamically linked to your application) needs to be ABI-compatible with the MPI on the host system. Taking as an example
the Piz Daint Cray XC50 supercomputer at CSCS, to best meet the required ABI
compatibility we recommend that the container application uses one of the
following MPI implementations:

	MPICH v3.1.4 [http://www.mpich.org/static/downloads/3.1.4/mpich-3.1.4.tar.gz] (Feburary 2015)

	MVAPICH2 2.2 [http://mvapich.cse.ohio-state.edu/download/mvapich/mv2/mvapich2-2.2.tar.gz] (September 2016)

	Intel MPI Library 2017 Update 1

The following is an example Dockerfile to create a Debian image with MPICH
3.1.4:

FROM debian:jessie

RUN apt-get update && apt-get install -y \
 build-essential \
 wget \
 --no-install-recommends \
 && rm -rf /var/lib/apt/lists/*

RUN wget -q http://www.mpich.org/static/downloads/3.1.4/mpich-3.1.4.tar.gz \
 && tar xf mpich-3.1.4.tar.gz \
 && cd mpich-3.1.4 \
 && ./configure --disable-fortran --enable-fast=all,O3 --prefix=/usr \
 && make -j$(nproc) \
 && make install \
 && ldconfig \
 && cd .. \
 && rm -rf mpich-3.1.4 \
 && rm mpich-3.1.4.tar.gz

Note

Applications that are statically linked to MPI libraries
will not work with the native MPI support provided by the hook.

Once the system administrator has configured the hook, containers with native
MPI support can be launched by passing the --mpi option to the
sarus run command, e.g.:

$ srun -N 16 -n 16 sarus run --mpi <repo name>/<image name> <mpi_application>

NVIDIA GPU support

NVIDIA provides access to GPU devices and their driver stacks inside OCI
containers through the NVIDIA Container Toolkit (part of the NVIDIA Container
Runtime [https://github.com/NVIDIA/nvidia-container-runtime] project).

When Sarus is configured to use this hook, the GPU devices to be made
available inside the container can be selected by setting the
CUDA_VISIBLE_DEVICES environment variable in the host system. Such action is
often performed automatically by the workload manager or other site-specific
software (e.g. the SLURM workload manager sets CUDA_VISIBLE_DEVICES when
GPUs are requested via the Generic Resource Scheduling plugin [https://slurm.schedmd.com/gres.html]). Be sure to check the setup provided by
your computing site.

The container image needs to include a CUDA runtime that is suitable for both
the target container applications and the available GPUs in the host system. One
way to achieve this is by basing your image on one of the official Docker images
provided by NVIDIA, i.e. the Dockerfile should start with a line like this:

FROM nvidia/cuda:8.0

Note

To check all the available CUDA images provided by NVIDIA, visit
https://hub.docker.com/r/nvidia/cuda/

When developing GPU-accelerated images on your workstation, we recommend using
nvidia-docker [https://github.com/NVIDIA/nvidia-docker] to run and test
containers using an NVIDIA GPU.

SSH connection within containers

Sarus also comes with a hook which enables support for SSH connections within
containers.

When Sarus is configured to use this hook, you must first run the command
sarus ssh-keygen to generate the SSH keys that will be used by the SSH
daemons and the SSH clients in the containers. It is sufficient to generate
the keys just once, as they are persistent between sessions.

It is then possible to execute a container passing the --ssh option to
sarus run, e.g. sarus run --ssh <image> <command>. Using the
previously generated the SSH keys, the hook will instantiate an sshd and setup a
custom ssh binary inside each container created with the same command.

Within a container spawned with the --ssh option, it is possible to connect
into other containers by simply issuing the ssh command available in the
default search PATH. E.g.:

ssh <hostname of other node>

The custom ssh binary will take care of using the proper keys and
non-standard port in order to connect to the remote container.

OpenMPI communication through SSH

The MPICH-based MPI hook described above does not support OpenMPI libraries.
As an alternative, OpenMPI programs can communicate through SSH connections
created by the SSH hook.

To run an OpenMPI program using the SSH hook, we need to manually provide a list
of hosts and explicitly launch mpirun only on one node of the allocation.
We can do so with the following commands:

salloc -C gpu -N4 -t5
srun hostname > $SCRATCH/hostfile
srun sarus run --ssh \
 --mount=src=/users,dst=/users,type=bind \
 --mount=src=$SCRATCH,dst=$SCRATCH,type=bind \
 ethcscs/openmpi:3.1.3 \
 bash -c 'if [$SLURM_PROCID -eq 0]; then mpirun --hostfile $SCRATCH/hostfile -npernode 1 /openmpi-3.1.3/examples/hello_c; else sleep infinity; fi'

Glibc replacement

Sarus’s source code includes a hook able to inject glibc libraries from the
host inside the container, overriding the glibc of the container.

This is useful when injecting some host resources (e.g. MPI libraries) into the
container and said resources depend on a newer glibc than the container’s one.

The host glibc stack to be injected is configured by the system administrator.

If Sarus is configured to use this hook, the glibc replacement can be activated
by passing the --glibc option to sarus run. Since native MPI
support is the most common occurrence of host resources injection, the hook is
also implicitly activated when using the --mpi option.

Even when the hook is configured and activated, the glibc libraries in the
container will only be replaced if the following conditions apply:

	the container’s libraries are older than the host’s libraries;

	host and container glibc libraries have the same soname and are ABI compatible.

Running MPI applications without the native MPI hook

The MPI replacement mechanism controlled by the --mpi
option is not mandatory to run distributed applications in Sarus containers. It
is possible to run containers using the MPI implementation embedded in the image,
foregoing the performance of custom high-performance hardware.

This can be useful in a number of scenarios:

	the software stack in the container should not be altered in any way

	non-performance-critical testing

	impossibility to satisfy ABI compatibility for native hardware acceleration

Sarus can be launched as a normal MPI program, and the execution context will be
propagated to the container application:

mpiexec -n <number of ranks> sarus run <image> <MPI application>

The important aspect to consider is that the process management system from the
host must be able to communicate with the MPI libraries in the container.

MPICH-based MPI implementations by default use the
Hydra process manager [https://wiki.mpich.org/mpich/index.php/Hydra_Process_Management_Framework]
and the PMI-2 interface [https://link.springer.com/chapter/10.1007/978-3-642-15646-5_4]
to communicate between processes. OpenMPI by default uses the
OpenRTE (ORTE) framework [https://www.open-mpi.org/papers/euro-pvmmpi-2005-orte/]
and the PMIx interface [https://pmix.org/], but can be configured to
support PMI-2.

Note

Additional information about the support provided by PMIx for
containers and cross-version use cases can be found here:
https://pmix.org/support/faq/how-does-pmix-work-with-containers/

As a general rule of thumb, corresponding MPI implementations (e.g. using an
MPICH-compiled mpiexec on the host to launch Sarus containers featuring
MPICH libraries) should work fine together. As mentioned previously, if an
OpenMPI library in the container has been configured to support PMI, the
container should also be able to communicate with an MPICH-compiled mpiexec
from the host.

The following is a minimal Dockerfile example of building OpenMPI 4.0.2 with
PMI-2 support on Ubuntu 18.04:

FROM ubuntu:18.04

RUN apt-get update && apt-get install -y \
 build-essential \
 ca-certificates \
 automake \
 autoconf \
 libpmi2-0-dev \
 wget \
 --no-install-recommends \
 && rm -rf /var/lib/apt/lists/*

RUN wget https://download.open-mpi.org/release/open-mpi/v4.0/openmpi-4.0.2.tar.gz \
 && tar xf openmpi-4.0.2.tar.gz \
 && cd openmpi-4.0.2 \
 && ./configure --prefix=/usr --with-pmi=/usr/include/slurm-wlm --with-pmi-libdir=/usr/lib/x86_64-linux-gnu CFLAGS=-I/usr/include/slurm-wlm \
 && make -j$(nproc) \
 && make install \
 && ldconfig \
 && cd .. \
 && rm -rf openmpi-4.0.2.tar.gz openmpi-4.0.2

When running under the Slurm workload manager, the process management interface
can be selected with the --mpi option to srun. The following example
shows how to run the OSU point-to-point latency test
from the Sarus cookbook on CSCS’ Piz Daint Cray XC50 system without native
interconnect support:

$ srun -C gpu -N2 -t2 --mpi=pmi2 sarus run ethcscs/mpich:ub1804_cuda92_mpi314_osu ./osu_latency
###MPI-3.0
OSU MPI Latency Test v5.6.1
Size Latency (us)
0 6.82
1 6.80
2 6.80
4 6.75
8 6.79
16 6.86
32 6.82
64 6.82
128 6.85
256 6.87
512 6.92
1024 9.77
2048 10.75
4096 11.32
8192 12.17
16384 14.08
32768 17.20
65536 29.05
131072 57.25
262144 83.84
524288 139.52
1048576 249.09
2097152 467.83
4194304 881.02

Notice that an --mpi=pmi2 option was passed to srun but not to
sarus run.

ABI compatibility and its implications

The native MPICH hook injects host libraries into the
container, effectively replacing the compatible MPI implementation provided by the
container image. This is done to achieve optimal performance: while container
images are ideally infrastructure agnostic [https://github.com/opencontainers/runtime-spec/blob/master/principles.md#3-infrastructure-agnostic]
to maximize portability, the interconnect technologies found on HPC systems are
often proprietary, requiring vendor-specific MPI software to be used at their
full potential, or in some cases just to access the network hardware.

In order to allow the container applications to work seamlessly after the
replacement, the container MPI libraries and the host MPI libraries must have
compatible application binary interfaces
(ABI) [https://en.wikipedia.org/wiki/Application_binary_interface].

An ABI is an interface which defines interactions between software components at
the machine code level, for example between an application executable and a
shared object library. It is conceptually opposed to an
API (application programming interface) [https://en.wikipedia.org/wiki/Application_programming_interface],
which instead defines interactions at the source code level.

If two libraries implement the same ABI, applications can be dynamically linked
to either of them and still work seamlessly.

In 2013, the developers of several MPI implementations based on the MPICH
library announced an initiative [https://www.mpich.org/abi/] to maintain ABI
compatibility between their implementations. At the time of writing, the
software adhering to such collaboration are:

	MPICH v3.1 (Released Feburary 2014)

	Intel® MPI Library v5.0 (Released June 2014)

	Cray MPT v7.0.0 (Released June 2014)

	MVAPICH2 2.0 (Release June 2014)

	Parastation MPI 5.1.7-1 (Released December 2016)

	RIKEN MPI 1.0 (Released August 2016)

Applications linked to one of the above libraries can work with any other
implementation on the list, assuming the ABI versions of the libraries linked
at compile time and linked at runtime are compatible.

The MPICH ABI Initiative establishes the naming convention [https://wiki.mpich.org/mpich/index.php/ABI_Compatibility_Initiative#ABI_Compliance_Requirements]
for complying libraries. The ABI version of a binary can be determined by the
string of numbers trailing the filename. For example, in the case of MPICH
v3.1.1, which has ABI version 12.0.1:

$ ls -l /usr/local/lib
total 9356
lrwxrwxrwx. 1 root root 13 Mar 16 13:30 libfmpich.so -> libmpifort.so
-rw-r--r--. 1 root root 5262636 Mar 16 13:30 libmpi.a
-rwxr-xr-x. 1 root root 990 Mar 16 13:30 libmpi.la
lrwxrwxrwx. 1 root root 16 Mar 16 13:30 libmpi.so -> libmpi.so.12.0.1
lrwxrwxrwx. 1 root root 16 Mar 16 13:30 libmpi.so.12 -> libmpi.so.12.0.1
-rwxr-xr-x. 1 root root 2649152 Mar 16 13:30 libmpi.so.12.0.1
lrwxrwxrwx. 1 root root 9 Mar 16 13:30 libmpich.so -> libmpi.so
lrwxrwxrwx. 1 root root 12 Mar 16 13:30 libmpichcxx.so -> libmpicxx.so
lrwxrwxrwx. 1 root root 13 Mar 16 13:30 libmpichf90.so -> libmpifort.so
-rw-r--r--. 1 root root 305156 Mar 16 13:30 libmpicxx.a
-rwxr-xr-x. 1 root root 1036 Mar 16 13:30 libmpicxx.la
lrwxrwxrwx. 1 root root 19 Mar 16 13:30 libmpicxx.so -> libmpicxx.so.12.0.1
lrwxrwxrwx. 1 root root 19 Mar 16 13:30 libmpicxx.so.12 -> libmpicxx.so.12.0.1
-rwxr-xr-x. 1 root root 185336 Mar 16 13:30 libmpicxx.so.12.0.1
-rw-r--r--. 1 root root 789026 Mar 16 13:30 libmpifort.a
-rwxr-xr-x. 1 root root 1043 Mar 16 13:30 libmpifort.la
lrwxrwxrwx. 1 root root 20 Mar 16 13:30 libmpifort.so -> libmpifort.so.12.0.1
lrwxrwxrwx. 1 root root 20 Mar 16 13:30 libmpifort.so.12 -> libmpifort.so.12.0.1
-rwxr-xr-x. 1 root root 364832 Mar 16 13:30 libmpifort.so.12.0.1
lrwxrwxrwx. 1 root root 9 Mar 16 13:30 libmpl.so -> libmpi.so
lrwxrwxrwx. 1 root root 9 Mar 16 13:30 libopa.so -> libmpi.so
drwxr-xr-x. 2 root root 39 Mar 16 13:30 pkgconfig

The initiative also defines update rules [https://wiki.mpich.org/mpich/index.php/ABI_Compatibility_Initiative#ABI_String_Updates]
for the version strings: assuming a starting version of libmpi.so.12.0.0,
updates to the library implementation which do not change the public interface
would result in libmpi.so.12.0.1. Conversely, the addition of new features,
without altering existing interface, would result in libmpi.so.12.1.0.
Interface breaking changes would result in a bump to the first number in the
string: libmpi.so.13.0.0.

Within the boundary of a compatible interface version, one could perform the
following type of replacements:

	Forward replacement: replacing the library an application was originally
linked to with a newer version (e.g. 12.0.x is replaced by 12.1.x).
This is is safe, since the newer version maintains the interface of the
older one. An application can still successfully access the functions and
symbols found at compilation time.

	Backward replacement: replacing the library an application was originally
linked to with an older version (e.g. 12.1.x is replaced by 12.0.x).
This is NOT safe, since the new features/functions which resulted in the
minor version bump are not present in the older library. If an application
tries to access functions which are only present in the newer version, this
will result in an application failure (crash).

Armed with this knowledge, let’s go full circle and return to our starting
point. The native MPICH hook will mount host MPI
libraries over corresponding libraries into the container to enable transparent
native performance.
Performing this action over a container image with an MPI implementation newer
than the configured host one might prevent container applications from running.
For this reason, before performing the mounts the hook verifies the ABI string
compatibility between the involved libraries.
If non-matching major version are detected, the hook will stop execution
and return an error. If non-matching minor versions are detected when performing
a backward replacement, the hook will print a warning but will proceed in the
attempt to let the container application run.

The host MPI implementation to be injected is system-specific and is
configured by the system administrator.

Important

Please refer to the documentation or contacts provided by your computing
site to learn more about the compatible MPI versions on a given system.

Creating custom Docker images with CUDA

The base images provided by NVIDIA in Docker Hub [https://hub.docker.com/r/nvidia/cuda]
only offer flavors based on Ubuntu and CentOS. If you want to build a CUDA-enabled
image on a different distribution, we offer the following advice:

Installing the CUDA Toolkit

	Package manager installer:
repository installers (to be used through the system package manager)
are available for Fedora, OpenSUSE, RHEL and SLES (and also for Ubuntu and CentOS,
if you don’t want to use NVIDIA’s images). For detailed installation instructions,
refer to the official CUDA Toolkit Documentation (https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#package-manager-installation).

Please note that installing the default package options (e.g. cuda or cuda-tookit)
will add a significant amount of resources to your image (more than 1GB).
Significant size savings can be achieved by selectively installing only the
packages with the parts of the Toolkit that you need. Please consult your system
package manager documentation in order to list the available packages inside
the CUDA repositories.

	Runfile install:
some distributions are not covered by the CUDA package manager and have to perform
the installation through the standalone runfile installer.
One such case is Debian, which is also used as base for several official Docker
Hub images (e.g. Python [https://hub.docker.com/_/python/]). For detailed installation instructions,
refer to the official CUDA Toolkit Documentation (https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#runfile).
We advise to supply the --silent and --toolkit options to the installer,
to avoid installing the CUDA drivers as well.

The standalone installer will add a significant amount of resources to your image,
including documentation and SDK samples. If you are really determined to reduce
the size of your image, you can selectively rm -rf the parts of the Toolkit
that you don’t need, but be careful about not deleting libraries and tools
that may be used by applications in the container!

Controlling the NVIDIA Container Runtime

The NVIDIA Container Runtime (at the heart of nvidia-docker v2) is controlled
through several environment variables. These can be part of the container image
or be set by docker run with the -e, --env or --env-file
options (please refer to the official
documentation [https://docs.docker.com/engine/reference/commandline/run/#set-environment-variables--e---env---env-file]
for the full syntax of these flags). A brief description of the most useful
variables follows:

	NVIDIA_VISIBLE_DEVICES: This variable controls which GPUs will be made accessible
inside the container. The values can be a list of indexes (e.g. 0,1,2), all, or
none. If the variable is empty or unset, the runtime will behave as default Docker.

	NVIDIA_DRIVER_CAPABILITIES: This option controls which driver libraries and binaries
will be mounted inside the container. It accepts as values a comma-separated list of
driver features (e.g. utility,compute) or the string all (for all driver capabilities).
An empty or unset variable will default to minimal driver capabilties (utility).

	NVIDIA_REQUIRE_CUDA: A logical expression to define a constraint on the CUDA driver version
required by the container (e.g. "cuda>=8.0" will require a driver supporting the CUDA
Toolkit version 8.0 and later). Multiple constraints can be expressed in a single environment
variable: space-separated constraints are ORed, comma-separated constraints are ANDed.

A full list of the environment variables looked up by the NVIDIA Container Runtime
and their possible values is available here [https://github.com/NVIDIA/nvidia-container-runtime#environment-variables-oci-spec].

As an example, in order to work correctly with the NVIDIA runtime, an image including
a CUDA 8.0 application could feature these instructions in its Dockerfile:

ENV NVIDIA_VISIBLE_DEVICES all
ENV NVIDIA_DRIVER_CAPABILITIES compute,utility
ENV NVIDIA_REQUIRE_CUDA "cuda>=8.0"

Alternatively, the variables can be specified (or even overwritten) from the
command line:

$ docker run --runtime=nvidia -e NVIDIA_VISIBLE_DEVICES=all -e NVIDIA_DRIVER_CAPABILITIES=compute,utility --rm nvidia/cuda nvidia-smi

The official nvidia/cuda images already include a set of these environment
variables. This means that all the Dockerfiles that do a FROM nvidia/cuda
will automatically inherit them and thus will work seamlessly with the NVIDIA
Container Runtime.

Developer documentation

	Class diagram

	Running unit and integration tests
	Unit tests

	Integration tests

	SSH Hook
	Introduction

	Overview of the user interface

	Configuration by the system administrator

	Architecture

	The nitty gritty

Class diagram

The class diagram below illustrates the internal architecture of Sarus.
Please note that here the goal is to provide an overview of the system’s architecture and the class diagram
is just a simplified representiation of the system: many classes and details of minor importance where omitted.

[image: Sarus class diagram]
Sarus class diagram

Running unit and integration tests

Unit tests

In order to run Sarus unit tests, it is advised to disable the security checks
in the sarus.json file.

Disabling security checks prevents some tests from failing because some files
(e.g. artifacts to test JSON parsing and validation) are not root-owned and
located in root-owned directories. The unit tests for security checks
individually re-enable the functionality to reliably verify its effectiveness.

The unit tests are written using the CppUTest [https://cpputest.github.io/]
framework, which the build scripts are able to retrieve and compile
automatically.

The tests are run from the build directory with the help of CTest, the test
driver program from the CMake suite. We differentiate between normal tests and
test that require root privileges (e.g. those performing filesystem mounts). The
latter are identified by the suffix AsRoot in the name of the test
executable.

Run normal unit tests
$ CTEST_OUTPUT_ON_FAILURE=1 ctest --exclude-regex 'AsRoot'

Run 'AsRoot' unit tests
$ sudo CTEST_OUTPUT_ON_FAILURE=1 ctest --tests-regex 'AsRoot'

Generating coverage data

If the build was configured with the CMake toolchain file gcc-gcov.cmake,
the unit tests executables automatically generate gcov files with raw
coverage data. We can process and summarize these data using gcov and the
gcovr [https://gcovr.com/] utility:

Note

To yield reliable results, it is advised to collect unit test coverage data
only when the build has been performed in “Debug” configuration.

Assuming that we are in the project's root directory and Sarus was built in the
'build' subdirectory
root_dir=$(pwd)
build_dir=$(pwd)/build
mkdir ${build_dir}/gcov
cd ${build_dir}/gcov
gcov --preserve-paths $(find ${build_dir}/src -name "*.gcno" |grep -v test |tr '\n' ' ')
gcovr -r ${root_dir}/src -k -g --object-directory ${build_dir}/gcov

Integration tests

Integration tests use Python 3 and the packages indicated in the
Requirements page. Sarus must be correctly
installed and configured on the system in order to successfully perform
integration testing. Before running the tests, we need to re-target the
centralized repository to a location that is writable by the current user (this
is not necessary if running integration tests as root):

$ mkdir -p ~/sarus-centralized-repository
$ sudo sed -i -e 's@"centralizedRepositoryDir": *".*"@"centralizedRepositoryDir": "/home/docker/sarus-centralized-repository"@' /opt/sarus/etc/sarus.json

Note

Integration tests are not exposed to the risk of failing when runtime security
checks are enabled, like unit tests are. To test a configuration more similar
to a production deployment, re-enable security checks in the sarus.json file.

We can run the tests from the parent directory of the related Python scripts:

$ cd <sarus project root dir>/CI/src
$ PYTHONPATH=$(pwd):$PYTHONPATH CMAKE_INSTALL_PREFIX=/opt/sarus/ pytest -v -m 'not asroot' integration_tests/
$ sudo PYTHONPATH=$(pwd):$PYTHONPATH CMAKE_INSTALL_PREFIX=/opt/sarus/ pytest -v -m asroot integration_tests/

SSH Hook

Introduction

This document is meant to be read by developers in order to understand how Sarus provides SSH within containers.

Overview of the user interface

First of all, the user needs to run the command sarus ssh-keygen. This command generates the SSH keys
that will be used by the SSH daemons as well as the SSH clients in the containers.

Then the user can execute a container passing the --ssh option, e.g. sarus run --ssh <image> <command>.
This will first check that the user previously generated the SSH keys, and then will instantiate an sshd
per container and setup a custom ssh binary inside the containers.

Within a container spawned with the --ssh option, the user can ssh into other containers by simply issuing the
ssh command available in the default search PATH. E.g.

ssh <hostname of other node>

The custom ssh binary will take care of using the proper keys and non-standard port in order to connect
to the remote container.

Configuration by the system administrator

Below is an example of how the system administrator should configure the OCIHooks entry in the
sarus.json in order to enable the SSH hook:

{
 "OCIHooks": {
 "prestart": [
 {
 "path": "<sarus prefix>/bin/ssh_hook",
 "env": [
 "HOOK_BASE_DIR=/home",
 "PASSWD_FILE=/opt/sarus/etc/passwd",
 "OPENSSH_DIR=/opt/sarus/openssh"
],
 "args": [
 "ssh_hook",
 "start-sshd"
]
 }
]
 }
}

Architecture

Most of the ssh-related logic is encapsulated in the SSH hook. The SSH hook is an executable binary that
performs different ssh-related operations depending on the CLI command that receives as parameter from Sarus.

The nitty gritty

The Sarus’s custom OpenSSH

Sarus uses a custom statically-linked version of OpenSSH. At build time, if the CMake’s parameter
ENABLE_SSH=TRUE is specified, the custom OpenSSH is built and installed under the Sarus’s installation directory.
Two custom configuration files (sshd_config, ssh_config) are also installed along with the various SSH binaries
(ssh, sshd, ssh-keygen, etc.) . The “sshd” and “ssh” custom binaries are configured (hard coded)
to pick the custom configuration files inside the container (sshd_config and ssh_config respectively).
The custom sshd_config file instructs sshd to listen on a specific non-standard port and to only accept
authentications from the SSH key generated through the “sarus ssh-keygen” command. The custom ssh_config
instructs ssh to connect to the non-standard port and to use the SSH key generated through the “sarus ssh-keygen” command.

How the SSH keys are generated

When the command “sarus ssh-keygen” is issued, the command object cli::CommandSshkeygen gets executed which
in turn executes the SSH hook with the “keygen” CLI argument.

The hook performs the following operations:

	Read from the environment variables the hook base directory.

	Read from the environment variables the location of the passwd file.

	Get the username from the passwd file and use it to determine the user’s hook directory (where the SSH keys are stored).

	Read from the environment variables the location of the custom OpenSSH.

	Execute the program “ssh-keygen” to generate two pairs of public/private keys in the user’s hook directory.
One pair will be used by the SSH daemon, the other pair will be used by the SSH client.

How the existance of the SSH keys is checked

When the command “sarus run –ssh <image> <command>” is issued, the command object cli::CommandRun gets
executed which in turn executes the SSH hook with the “check-user-has-sshkeys” CLI argument.

The hook performs the following operations:

	Read from the environment variables the hook base directory.

	Read from the environment variables the location of the passwd file.

	Get the username from the passwd file and use it to determine the user’s hook directory (where the SSH keys are stored).

	Check that the user’s hook directory contains the SSH keys.

How the SSH daemon and SSH client are setup in the container

When the command “sarus run –ssh <image> <command>” is issued, Sarus sets up the OCI bundle and executes
runc. Then runc executes the OCI prestart hooks specified in sarus.json. The system administrator should have
specified the SSH hook with the “start-sshd” CLI argument.

The hook performs the following operations:

	Read from the environment variables the hook base directory.

	Read from the environment variables the location of the passwd file.

	Read from the environment variables the location of the custom OpenSSH

	Read from stdin the container’s state as defined in the OCI specification.

	Enter the container’s mount namespaces in order to access the container’s OCI bundle.

	Enter the container’s pid namespace in order to start the sshd process inside the container.

	Read the container’s attributes from the OCI bundle’s config.json in order to determine whether
the SSH hook is enabled.

	If the SSH hook is disabled exit.

	Read the user’s UID from the OCI bundle’s config.json, get the username from the passwd file
and use it to determine the user’s hook directory (where the SSH keys are stored).

	Bind mount the custom OpenSSH (executables + configuration files) into the container.

	Copy the SSH keys into the container.

	Add an “sshd” user to /etc/passwd if necessary.

	Chroot to the container and start sshd inside the container.

	Bind mount the custom “ssh” binary into the container’s /usr/bin, thus the shell
will pick the custom binary when the command “ssh” is executed.

Sarus Cookbook

This cookbook is a collection of documented use case examples of the Sarus
container runtime for HPC. Each example is accompanied by material and
information sufficient to reproduce it. In this sense, the examples also serve
as recipes demonstrating how to build containers with features like MPI and
CUDA, and how to leverage those features from Sarus. The examples are ordered by
increasing complexity, providing a smooth learning curve.

Contents:

	Test Setup

	CUDA N-body

	OSU Micro benchmarks

	NVIDIA GPUDirect RDMA

	OpenMPI with SSH launcher

	GROMACS

	TensorFlow with Horovod

	PyFR

	Intel Cluster Edition 19.01

Test Setup

The examples and performance measurements reported in this document were carried
out on Piz Daint [https://www.cscs.ch/computers/piz-daint/], a hybrid Cray
XC50/XC40 system in production at the Swiss National Supercomputing Centre
(CSCS) in Lugano, Switzerland. The system compute nodes are connected by the
Cray Aries interconnect under a Dragonfly topology, notably providing users
access to hybrid CPU-GPU nodes. Hybrid nodes are equipped with an Intel Xeon
E5-2690v3 processor, 64 GB of RAM, and a single NVIDIA Tesla P100 GPU with 16 GB
of memory. The software environment on Piz Daint at the time of writing is the
Cray Linux Environment 6.0.UP07 (CLE 6.0) using Environment Modules to provide
access to compilers, tools, and applications. The default versions for the
NVIDIA CUDA and MPI software stacks are, respectively, CUDA version 9.1, and
Cray MPT version 7.7.2.

We install and configure Sarus on Piz Daint to use the native MPI and NVIDIA
Container Runtime hooks, and to mount the container images from a Lustre
parallel filesystem.

Performance measurements

In tests comparing native and container performance numbers, each data point
presents the average and standard deviation of 50 runs, to produce statistically
relevant results, unless otherwise noted. For a given application, all
repetitions at each node count for both native and container execution were
performed on the same allocated set of nodes.

CUDA N-body

A fast n-body simulation is included as part of the CUDA Software Development
Kit samples [https://developer.nvidia.com/cuda-code-samples]. The CUDA n-body
sample code simulates the gravitational interaction and motion of a group of
bodies. The code is written with CUDA and C and can make efficient use of
multiple GPUs to calculate all-pairs gravitational interactions. More details
of the implementation can be found in this article by Lars Nyland et al.:
Fast N-Body Simulation with CUDA [https://developer.download.nvidia.com/compute/cuda/1.1-Beta/x86_website/projects/nbody/doc/nbody_gems3_ch31.pdf].

We use this sample code to show that Sarus is able to leverage the NVIDIA
Container Runtime hook in order to provide containers with native performance
from NVIDIA GPUs present in the host system.

Test Case

For this test case, we run the code with \(n=200,000\) bodies using
double-precision floating-point arithmetic on 1 Piz Daint compute node,
featuring a single Tesla P100 GPU.

Running the container

We run the container using the Slurm Workload Manager and Sarus:

srun -Cgpu -N1 -t1 \
 sarus run ethcscs/cudasamples:9.2 \
 /usr/local/cuda/samples/bin/x86_64/linux/release/nbody \
 -benchmark -fp64 -numbodies=200000

A typical output will look like:

Run "nbody -benchmark [-numbodies=<numBodies>]" to measure performance.
 -fullscreen (run n-body simulation in fullscreen mode)
 -fp64 (use double precision floating point values for simulation)
 -hostmem (stores simulation data in host memory)
 -benchmark (run benchmark to measure performance)
 -numbodies=<N> (number of bodies (>= 1) to run in simulation)
 -device=<d> (where d=0,1,2.... for the CUDA device to use)
 -numdevices=<i> (where i=(number of CUDA devices > 0) to use for simulation)
 -compare (compares simulation results running once on the default
 GPU and once on the CPU)
 -cpu (run n-body simulation on the CPU)
 -tipsy=<file.bin> (load a tipsy model file for simulation)

NOTE: The CUDA Samples are not meant for performance measurements.
Results may vary when GPU Boost is enabled.

> Windowed mode
> Simulation data stored in video memory
> Double precision floating point simulation
> 1 Devices used for simulation
GPU Device 0: "Tesla P100-PCIE-16GB" with compute capability 6.0

> Compute 6.0 CUDA device: [Tesla P100-PCIE-16GB]
Warning: "number of bodies" specified 200000 is not a multiple of 256.
Rounding up to the nearest multiple: 200192.
200192 bodies, total time for 10 iterations: 3927.009 ms
= 102.054 billion interactions per second
= 3061.631 double-precision GFLOP/s at 30 flops per interaction

Running the native Application

We compile and run the same code on Piz Daint using a similar Cuda Toolkit
version (cudatoolkit/9.2).

Container image and Dockerfile

The container image ethcscs/cudasamples:9.2 (based on Nvidia cuda/9.2) used
for this test case can be pulled from CSCS DockerHub [https://hub.docker.com/r/ethcscs/cudasamples/tags] or be rebuilt with this
Dockerfile:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	FROM nvidia/cuda:9.2-devel

RUN apt-get update && apt-get install -y --no-install-recommends \
 cuda-samples-$CUDA_PKG_VERSION && \
 rm -rf /var/lib/apt/lists/*

RUN (cd /usr/local/cuda/samples/1_Utilities/bandwidthTest && make)
RUN (cd /usr/local/cuda/samples/1_Utilities/deviceQuery && make)
RUN (cd /usr/local/cuda/samples/1_Utilities/deviceQueryDrv && make)
RUN (cd /usr/local/cuda/samples/1_Utilities/p2pBandwidthLatencyTest && make)
RUN (cd /usr/local/cuda/samples/1_Utilities/topologyQuery && make)
RUN (cd /usr/local/cuda/samples/5_Simulations/nbody && make)

CMD ["/usr/local/cuda/samples/1_Utilities/deviceQuery/deviceQuery"]

Required OCI hooks

	NVIDIA Container Runtime hook

Benchmarking results

We report the gigaflops per second performance attained by the two applications
in the following table:

	
	Average

	Std. deviation

	Native

	3059.34

	5.30

	Container

	3058.91

	6.29

The results show that containers deployed with Sarus
and the NVIDIA Container Runtime hook can achieve the same performance of the
natively built CUDA application, both in terms of average value and variability.

OSU Micro benchmarks

The OSU Micro Benchmarks (OMB) [http://mvapich.cse.ohio-state.edu/benchmarks/]
are a widely used suite of benchmarks for measuring and evaluating the
performance of MPI operations for point-to-point, multi-pair, and collective
communications. These benchmarks are often used for comparing different MPI
implementations and the underlying network interconnect.

We use OMB to show that Sarus is able to provide the same native MPI high
performance to containerized applications when using the native MPICH hook.
As indicated in the documentation for the hook, the only conditions required are:

	The MPI installed in the container image must comply to the requirements of the
MPICH ABI Compatibility Initiative [http://www.mpich.org/abi/].
ABI compatibility and its implications are further discussed
here.

	The application in the container image must be dynamically linked with the
MPI libraries.

Test cases

Latency

The osu_latency benchmark measures the min, max and the average latency of
a ping-pong communication between a sender and a receiver where the sender
sends a message and waits for the reply from the receiver. The messages are
sent repeatedly for a variety of data sizes in order to report the average
one-way latency. This test allows us to observe any possible overhead from
enabling the MPI support provided by Sarus.

All-to-all

The osu_alltoall benchmark measures the min, max and the average latency of
the MPI_Alltoall blocking collective operation across N processes, for various
message lengths, over a large number of iterations. In the default version,
this benchmark report the average latency for each message length up to 1MB.
We run this benchmark from a minimum of 2 nodes up to 128 nodes, increasing the
node count in powers of two.

Running the container

We run the container using the Slurm Workload Manager and Sarus.

Latency

sarus pull ethcscs/mvapich:ub1804_cuda92_mpi22_osu
srun -C gpu -N2 -t2 \
 sarus run --mpi ethcscs/mvapich:ub1804_cuda92_mpi22_osu \
 /usr/local/libexec/osu-micro-benchmarks/mpi/pt2pt/osu_latency

A typical output looks like:

OSU MPI Latency Test v5.3.2
Size Latency (us)
0 1.11
1 1.11
2 1.09
4 1.09
8 1.09
16 1.10
32 1.09
64 1.10
128 1.11
256 1.12
512 1.15
1024 1.39
2048 1.67
4096 2.27
8192 4.21
16384 5.12
32768 6.73
65536 10.07
131072 16.69
262144 29.96
524288 56.45
1048576 109.28
2097152 216.29
4194304 431.85

Since the Dockerfiles use the WORKDIR instruction to set a default working
directory, we can use that to simplify the terminal command:

srun -C gpu -N2 -t2 \
 sarus run --mpi ethcscs/osu-mb:5.3.2-mpich3.1.4 \
 ./osu_latency

All-to-all

srun -C gpu -N2 -t2 \
 sarus run --mpi ethcscs/osu-mb:5.3.2-mpich3.1.4 \
 ../collective/osu_alltoall

A typical outpout looks like:

OSU MPI All-to-All Personalized Exchange Latency Test v5.3.2
Size Avg Latency(us)
1 5.46
2 5.27
4 5.22
8 5.21
16 5.18
32 5.18
64 5.17
128 11.35
256 11.64
512 11.72
1024 12.03
2048 12.87
4096 14.52
8192 15.77
16384 19.78
32768 28.89
65536 49.38
131072 96.64
262144 183.23
524288 363.35
1048576 733.93

Running the native application

We compile the OSU micro benchmark suite natively using the Cray Programming
Environment (PrgEnv-cray) and linking against the optimized Cray MPI
(cray-mpich) libraries.

Container images and Dockerfiles

We built the OSU benchmarks on top of several images containing MPI, in order to
demonstrate the effectiveness of the MPI hook regardless of the ABI-compatible
MPI implementation present in the images:

MPICH

The container image ethcscs/mpich:ub1804_cuda92_mpi314_osu (based on
mpich/3.1.4) used for this test case can be pulled from CSCS DockerHub [https://hub.docker.com/r/ethcscs/mpich/tags] or be rebuilt with this
Dockerfile.

MVAPICH

The container image ethcscs/mvapich:ub1804_cuda92_mpi22_osu (based on
mvapich/2.2) used for this test case can be pulled from CSCS DockerHub [https://hub.docker.com/r/ethcscs/mvapich/tags] or be rebuilt with this
Dockerfile.
On the Cray, the supported Cray MPICH ABI is 12.0 (mvapich>2.2 requires
ABI/12.1 hence is not currently supported).

OpenMPI

As OpenMPI is not part of the MPICH ABI Compatibility Initiative, sarus run
--mpi with OpenMPI is not supported. Documentation can be found on this
dedicated page: OpenMPI with SSH launcher.

Intel MPI

Because the Intel MPI license limits general redistribution of the software,
we do not share the Docker image ethcscs/intelmpi used for this test case.
Provided the Intel installation files (such as archive and license file) are
available locally on your computer, you could build your own image with this
example
Dockerfile.

Required OCI hooks

	Native MPI hook (MPICH-based)

Benchmarking results

Latency

Consider now the following Figure that compares the average and
standard deviation of the osu_latency test results for the four tested
configurations.
It can be observed that Sarus with the native MPI hook allows containers to
transparently access the accelerated networking hardware on Piz Daint and
achieve the same performance as the natively built test.

[image: OSU Latency results]Results of the OSU Latency benchmark for the native MPI and three different
containers with ABI-compliant MPI libraries. The MPI in the container is
replaced at runtime by the native MPICH MPI hook used by Sarus.

All-to-all

We run the osu_alltoall benchmark only for two applications: native and
container with MPICH 3.1.4. We collect latency values for 1kB, 32kB, 65kB and
1MB message sizes, computing averages and standard deviation. The results are
displayed in the following Figure:

[image: OSU All-to-all results]Results of the OSU All-to-all benchmark for the native MPI and MPICH 3.1.4
container. The MPI in the container is replaced at runtime by the native MPICH
MPI hook used by Sarus.

We observe that the results from the container are very close to the native
results, for both average values and variability, across the node counts and
message sizes. The average value of the native benchmark for 1kB message size at
16 nodes is slightly higher than the one computed for the container benchmark.

It is worthy to note that the results of this benchmark are heavily influenced
by the topology of the tested set of nodes, especially regarding their
variabiliy. This means that other tests using the same node counts may achieve
significantly different results. It also implies that results at different node
counts are only indicative and not directly relatable, since we did not
allocate the same set of nodes for all node counts.

NVIDIA GPUDirect RDMA

GPUDirect [https://developer.nvidia.com/gpudirect] is a technology
that enables direct RDMA to and from GPU memory. This means that multiple GPUs
can directly read and write CUDA host and device memory, without resorting to
the use of host memory or the CPU, resulting in significant data transfer
performance improvements.

We will show here that Sarus is able to leverage the GPUDirect technology.

Test case

This sample
C++ code
performs an MPI_Allgather operation using CUDA device memory and GPUDirect. If
the operation is carried out successfully, the program prints a success message
to standard output.

Running the container

Before running this code with Sarus, two environment variables must be set:
MPICH_RDMA_ENABLED_CUDA and LD_PRELOAD

MPICH_RDMA_ENABLED_CUDA: allows the MPI application to pass GPU
pointers directly to point-to-point and collective communication functions,
as well as blocking collective communication functions.

LD_PRELOAD: allows to load the specified cuda library from the
compute node before all others.

This can be done by passing a string command to bash:

srun -C gpu -N4 -t2 sarus run --mpi \
 ethcscs/mpich:ub1804_cuda92_mpi314_gpudirect-all_gather
 bash -c 'MPICH_RDMA_ENABLED_CUDA=1 LD_PRELOAD=/usr/lib/x86_64-linux-gnu/libcuda.so ./all_gather'

A successful output looks like:

Success!

Running the native application

export MPICH_RDMA_ENABLED_CUDA=1
srun -C gpu -N4 -t2 ./all_gather

A successful output looks like:

Success!

Container image and Dockerfile

The container image (based on cuda/9.2 and mpich/3.1.4) used for this test case
can be pulled from CSCS DockerHub [https://hub.docker.com/r/ethcscs/mpich/tags] or be rebuilt with this
Dockerfile:

	1
2
3
4
5
6
7

	# docker build -f Dockerfile -t \
ethcscs/mpich:ub1804_cuda92_mpi314_gpudirect-all_gather .
FROM ethcscs/mpich:ub1804_cuda92_mpi314

COPY all_gather.cpp /opt/mpi_gpudirect/all_gather.cpp
WORKDIR /opt/mpi_gpudirect
RUN mpicxx -g all_gather.cpp -o all_gather -I/usr/local/cuda/include -L/usr/local/cuda/lib64 -lcudart

Required OCI hooks

	NVIDIA Container Runtime hook

	Native MPI hook (MPICH-based)

OpenMPI with SSH launcher

OpenMPI [https://www.open-mpi.org/] is an MPI implementation with widespread
adoption and support throughout the HPC community, and is featured in several
official Docker images as well.

The substantial differences with MPICH-based MPI implementations make the native
MPICH hook provided by Sarus ineffective on container images using OpenMPI.

This example will showcase how to run an OpenMPI container application by using
an SSH launcher and the SSH Hook.

Test case

We use the “Hello world in C” program included with the OpenMPI codebase in the
examples/hello_c.c [https://github.com/open-mpi/ompi/blob/master/examples/hello_c.c] file.
We do not measure performance with this test and we do not make comparisons with
a native implementation.

The program code at the time of writing follows for reference:

/*
 * Copyright (c) 2004-2006 The Trustees of Indiana University and Indiana
 * University Research and Technology
 * Corporation. All rights reserved.
 * Copyright (c) 2006 Cisco Systems, Inc. All rights reserved.
 *
 * Sample MPI "hello world" application in C
 */

#include <stdio.h>
#include "mpi.h"

int main(int argc, char* argv[])
{
 int rank, size, len;
 char version[MPI_MAX_LIBRARY_VERSION_STRING];

 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 MPI_Comm_size(MPI_COMM_WORLD, &size);
 MPI_Get_library_version(version, &len);
 printf("Hello, world, I am %d of %d, (%s, %d)\n",
 rank, size, version, len);
 MPI_Finalize();

 return 0;
}

Container image and Dockerfile

We start from the official image for Debian 8 “Jessie”, install the required build
tools, OpenMPI 3.1.3, and compile the example code using the MPI compiler.

FROM debian:jessie

RUN apt-get update \
 && apt-get install -y ca-certificates \
 file \
 g++ \
 gcc \
 gfortran \
 make \
 gdb \
 strace \
 realpath \
 wget \
 --no-install-recommends

RUN wget -q https://download.open-mpi.org/release/open-mpi/v3.1/openmpi-3.1.3.tar.gz \
 && tar xf openmpi-3.1.3.tar.gz \
 && cd openmpi-3.1.3 \
 && ./configure --with-slurm=no --prefix=/usr/local \
 && make all install
#./configure --with-slurm=no --prefix=/usr/local

RUN ldconfig
RUN cd /openmpi-3.1.3/examples && mpicc hello_c.c -o hello_c

Used OCI hooks

	SSH hook

	SLURM global sync hook

Running the container

To run an OpenMPI program using the SSH hook, we need to manually provide a list
of hosts and explicitly launch mpirun only on one node of the allocation.
We can do so with the following commands:

salloc -C gpu -N4 -t5
sarus ssh-keygen
srun hostname > $SCRATCH/hostfile
srun sarus run --ssh \
 --mount=src=$SCRATCH,dst=$SCRATCH,type=bind \
 ethcscs/openmpi:3.1.3 \
 bash -c 'if [$SLURM_PROCID -eq 0]; then mpirun --hostfile $SCRATCH/hostfile -npernode 1 /openmpi-3.1.3/examples/hello_c; else sleep infinity; fi'

Warning: Permanently added '[nid02182]:15263,[148.187.40.151]:15263' (RSA) to the list of known hosts.
Warning: Permanently added '[nid02180]:15263,[148.187.40.149]:15263' (RSA) to the list of known hosts.
Warning: Permanently added '[nid02181]:15263,[148.187.40.150]:15263' (RSA) to the list of known hosts.
Hello, world, I am 0 of 4, (Open MPI v3.1.3, package: Open MPI root@74cce493748b Distribution, ident: 3.1.3, repo rev: v3.1.3, Oct 29, 2018, 112)
Hello, world, I am 3 of 4, (Open MPI v3.1.3, package: Open MPI root@74cce493748b Distribution, ident: 3.1.3, repo rev: v3.1.3, Oct 29, 2018, 112)
Hello, world, I am 2 of 4, (Open MPI v3.1.3, package: Open MPI root@74cce493748b Distribution, ident: 3.1.3, repo rev: v3.1.3, Oct 29, 2018, 112)
Hello, world, I am 1 of 4, (Open MPI v3.1.3, package: Open MPI root@74cce493748b Distribution, ident: 3.1.3, repo rev: v3.1.3, Oct 29, 2018, 112)

GROMACS

GROMACS [http://www.gromacs.org/] is a
molecular dynamics package with an extensive array of modeling, simulation and
analysis capabilities. While primarily developed for the simulation of
biochemical molecules, its broad adoption includes reaserch fields such as
non-biological chemistry, metadynamics and mesoscale physics. One of the key
aspects characterizing GROMACS is the strong focus on high performance and
resource efficiency, making use of state-of-the-art algorithms and optimized
low-level programming techniques for CPUs and GPUs.

Test case

As test case, we select the 3M atom system from the HECBioSim [http://www.hecbiosim.ac.uk/benchmarks] benchmark suite for Molecular
Dynamics:

A pair of hEGFR tetramers of 1IVO and 1NQL:
 * Total number of atoms = 2,997,924
 * Protein atoms = 86,996 Lipid atoms = 867,784 Water atoms = 2,041,230 Ions = 1,914

The simulation is carried out using single precision, 1 MPI process per node
and 12 OpenMP threads per MPI process. We measured runtimes for 4, 8, 16, 32
and 64 compute nodes. The input file to download for the test case is
3000k-atoms/benchmark.tpr [http://www.hecbiosim.ac.uk/media/jdownloads/Software/gromacs.tar.gz].

Running the container

Assuming that the benchmark.tpr input data is present in a directory which
Sarus is configured to automatically mount inside the container (here referred
by the arbitrary variable $INPUT), we can run the container on 16 nodes as
follows:

srun -C gpu -N16 srun sarus run --mpi \
 ethcscs/gromacs:2018.3-cuda9.2_mpich3.1.4 \
 /usr/local/gromacs/bin/mdrun_mpi -s ${INPUT}/benchmark.tpr -ntomp 12

A typical output will look like:

 :-) GROMACS - mdrun_mpi, 2018.3 (-:
...
Using 4 MPI processes
Using 12 OpenMP threads per MPI process

On host nid00001 1 GPU auto-selected for this run.
Mapping of GPU IDs to the 1 GPU task in the 1 rank on this node: PP:0
NOTE: DLB will not turn on during the first phase of PME tuning
starting mdrun 'Her1-Her1'
10000 steps, 20.0 ps.

 Core t (s) Wall t (s) (%)
 Time: 20878.970 434.979 4800.0
 (ns/day) (hour/ns)
Performance: 3.973 6.041

GROMACS reminds you: "Shake Yourself" (YES)

If the system administrator did not configure Sarus to mount the input data
location during container setup, we can use the --mount option:

srun -C gpu -N16 sarus run --mpi \
 --mount=type=bind,src=<path-to-input-directory>,dst=/gromacs-data \
 ethcscs/gromacs:2018.3-cuda9.2_mpich3.1.4 \
 /usr/local/gromacs/bin/mdrun_mpi -s /gromacs-data/benchmark.tpr -ntomp 12

Running the native application

CSCS provides and supports GROMACS on Piz Daint. This documentation page [https://user.cscs.ch/computing/applications/gromacs/] gives more details on
how to run GROMACS as a native application. For this test case, the
GROMACS/2018.3-CrayGNU-18.08-cuda-9.1 modulefile was loaded.

Container image and Dockerfile

The container image ethcscs/gromacs:2018.3-cuda9.2_mpich3.1.4 (based on
cuda/9.2 and mpich/3.1) used for this test case can be pulled from CSCS
DockerHub [https://hub.docker.com/r/ethcscs/gromacs/tags] or be rebuilt with this
Dockerfile:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

	#!/bin/sh
FROM ethcscs/mpich:ub1804_cuda92_mpi314

Uncomment the following lines if you want to build mpi yourself:
RUN apt-get update \
&& apt-get install -y --no-install-recommends \
wget \
gfortran \
zlib1g-dev \
libopenblas-dev \
&& rm -rf /var/lib/apt/lists/*

Install MPICH
RUN wget -q http://www.mpich.org/static/downloads/3.1.4/mpich-3.1.4.tar.gz \
&& tar xf mpich-3.1.4.tar.gz \
&& cd mpich-3.1.4 \
&& ./configure --disable-fortran --enable-fast=all,O3 --prefix=/usr \
&& make -j$(nproc) \
&& make install \
&& ldconfig

Install CMake (apt installs cmake/3.10.2, we want a more recent version)
RUN mkdir /usr/local/cmake \
&& cd /usr/local/cmake \
&& wget -q https://cmake.org/files/v3.12/cmake-3.12.4-Linux-x86_64.tar.gz \
&& tar -xzf cmake-3.12.4-Linux-x86_64.tar.gz \
&& mv cmake-3.12.4-Linux-x86_64 3.12.4 \
&& rm cmake-3.12.4-Linux-x86_64.tar.gz \
&& cd /

ENV PATH=/usr/local/cmake/3.12.4/bin/:${PATH}

Install GROMACS (apt install gromacs/2018.1, we want a more recent version)
RUN wget -q http://ftp.gromacs.org/pub/gromacs/gromacs-2018.3.tar.gz \
&& tar xf gromacs-2018.3.tar.gz \
&& cd gromacs-2018.3 \
&& mkdir build && cd build \
&& cmake -DCMAKE_BUILD_TYPE=Release \
 -DGMX_BUILD_OWN_FFTW=ON -DREGRESSIONTEST_DOWNLOAD=ON \
 -DGMX_MPI=on -DGMX_GPU=on -DGMX_SIMD=AVX2_256 \
 -DGMX_BUILD_MDRUN_ONLY=on \
 .. \
&& make -j6 \
&& make check \
&& make install \
&& cd ../.. \
&& rm -fr gromacs-2018.3*

Required OCI hooks

	NVIDIA Container Runtime hook

	Native MPI hook (MPICH-based)

Results

We measure wall clock time (in seconds) and performance (in ns/day) as reported
by the application logs. The speedup values are computed using the wall clock
time averages for each data point, taking the native execution time at 4 nodes
as baseline. The results of our experiments are illustrated in the following
figure:

[image: GROMACS results]Comparison of wall clock execution time, performance, and speedup between native
and Sarus-deployed container versions of GROMACS on Piz Daint.

We observe the container application being up to 6% faster than the native
implementation, with a small but consistent performance advantage and
comparable standard deviations across the different node counts.

TensorFlow with Horovod

TensorFlow [https://www.tensorflow.org/] is a software framework providing an
API to express numerical computations using data flow graphs. It also provides
an implementation to run those computations on a broad array of platforms, from
mobile devices to large systems with heterogeneous environments. While usable in
a variety of scientific domains, it is mainly intended for the development of
machine-learning (ML) models, with a focus on deep neural networks. The
development of TensorFlow was started internally at Google Inc., and the
software was released as open source in November 2015.

Horovod [https://github.com/horovod/horovod] is a framework developed by Uber
Technologies Inc. to perform distributed training of deep neural networks on top
of another ML framework, like TensorFlow, Keras, or PyTorch. Notably, it allows
to replace TensorFlow’s own parameter server architecture for distributed
training with communications based on an MPI model, leveraging ring-allreduce
algorithms for improved usability and performance.

Horovod 0.15.1 with CUDA 9.x

As test case, we select the tf_cnn_benchmark [https://github.com/tensorflow/benchmarks] scripts from the Tensorflow project
for benchmarking convolutional neural networks. We use a ResNet-50 model [https://arxiv.org/abs/1512.03385] with a batch size of 64 and the synthetic
image data which the benchmark scripts are able to generate autonomously. We
performed runs from a minimum of 2 nodes up to 128 nodes, increasing the node
count in powers of two.

Running the container

Assuming that the tensorflow-benchmark code is present in a directory which Sarus is
configured to automatically mount inside the container (here referred by the
arbitrary variable $INPUT), we can run the container application as follows:

srun -C gpu -N4 -t5 sarus run --mpi \
 ethcscs/horovod:0.15.1-tf1.7.0-cuda9.0-mpich3.1.4-no-nccl \
 python ${INPUT}/tensorflow-benchmarks/scripts/tf_cnn_benchmarks/tf_cnn_benchmarks.py \
 --model resnet50 --batch_size 64 --variable_update horovod

If the system administrator did not configure Sarus to mount the input data
location during container setup, we can use the --mount option:

srun -C gpu -N4 -t5 sarus run --mpi \
 --mount=type=bind,src=<path-to-parent-directory>/tensorflow-benchmarks/scripts/,dst=/tf-scripts \
 ethcscs/horovod:0.15.1-tf1.7.0-cuda9.0-mpich3.1.4-no-nccl \
 python /tf-scripts/tf_cnn_benchmarks/tf_cnn_benchmarks.py \
 --model resnet50 --batch_size 64 --variable_update horovod

Native application

For the native implementation, we use TensorFlow 1.7.0, built using Cray Python
3.6, the Python extensions provided by the Cray Programming Environment 18.08,
CUDA 9.1 and cuDNN 7.1.4. These installations are performed by CSCS staff and
are available on Piz Daint through environment modules. We complete the software
stack by creating a virtual environment with Cray Python 3.6 and installing
Horovod 0.15.1 through the pip utility. The virtual environment is
automatically populated with system-installed packages from the loaded
environment modules.

Container image and Dockerfile

We start from the reference Dockerfile provided by Horovod for version 0.15.1
and modify it to use Python 3.5, TensorFlow 1.7.0, CUDA 9.0, cuDNN 7.0.5. These
specific versions of CUDA and cuDNN are required because they are the ones
against which the version of TensorFlow available through pip has been
built. We also replace OpenMPI with MPICH 3.1.4 and remove the installation of
OpenSSH, as the containers will be able to communicate between them thanks to
Slurm and the native MPI hook. Finally, we instruct Horovod not to use NVIDIA’s
NCCL library for any MPI operation, because NCCL is not available natively on
Piz Daint.
The final Dockerfile
is the following:

FROM nvidia/cuda:9.0-devel-ubuntu16.04

TensorFlow version is tightly coupled to CUDA and cuDNN so it should be selected carefully
ENV HOROVOD_VERSION=0.15.1
ENV TENSORFLOW_VERSION=1.7.0
ENV PYTORCH_VERSION=0.4.1
ENV CUDNN_VERSION=7.0.5.15-1+cuda9.0

NCCL_VERSION is set by NVIDIA parent image to "2.3.7"
ENV NCCL_VERSION=2.3.7-1+cuda9.0

Python 2.7 or 3.5 is supported by Ubuntu Xenial out of the box
ARG python=3.5
ENV PYTHON_VERSION=${python}

RUN apt-get update && apt-get install -y --no-install-recommends \
 build-essential \
 cmake \
 git \
 curl \
 vim \
 wget \
 ca-certificates \
 libcudnn7=${CUDNN_VERSION} \
 libnccl2=${NCCL_VERSION} \
 libnccl-dev=${NCCL_VERSION} \
 libjpeg-dev \
 libpng-dev \
 python${PYTHON_VERSION} \
 python${PYTHON_VERSION}-dev

RUN ln -s /usr/bin/python${PYTHON_VERSION} /usr/bin/python

RUN curl -O https://bootstrap.pypa.io/get-pip.py && \
 python get-pip.py && \
 rm get-pip.py

Install TensorFlow, Keras and PyTorch
RUN pip install tensorflow-gpu==${TENSORFLOW_VERSION} keras h5py torch==${PYTORCH_VERSION} torchvision

Install MPICH 3.1.4
RUN cd /tmp \
 && wget -q http://www.mpich.org/static/downloads/3.1.4/mpich-3.1.4.tar.gz \
 && tar xf mpich-3.1.4.tar.gz \
 && cd mpich-3.1.4 \
 && ./configure --disable-fortran --enable-fast=all,O3 --prefix=/usr \
 && make -j$(nproc) \
 && make install \
 && ldconfig \
 && cd .. \
 && rm -rf mpich-3.1.4 mpich-3.1.4.tar.gz \
 && cd /

Install Horovod, temporarily using CUDA stubs
RUN ldconfig /usr/local/cuda-9.0/targets/x86_64-linux/lib/stubs && \
 HOROVOD_WITH_TENSORFLOW=1 HOROVOD_WITH_PYTORCH=1 pip install --no-cache-dir horovod==${HOROVOD_VERSION} && \
 ldconfig

Set default NCCL parameters
RUN echo NCCL_DEBUG=INFO >> /etc/nccl.conf

Download examples
RUN apt-get install -y --no-install-recommends subversion && \
 svn checkout https://github.com/uber/horovod/trunk/examples && \
 rm -rf /examples/.svn

WORKDIR "/examples"

Used OCI hooks

	NVIDIA Container Runtime hook

	Native MPI hook (MPICH-based)

Results

We measure the performance in images/sec as reported by the application logs and
compute speedup values using the performance averages for each data point,
taking the native performance at 2 nodes as baseline. The results are showcased
in the following Figure:

[image: TensorFlow with Horovod results]
Comparison of performance and speedup between native and Sarus-deployed
container versions of TensorFlow with Horovod on Piz Daint.

We observe the container application closely matching the native installation
when running on up to 16 nodes, with performance differences and normalized
standard deviations less than 0.5%. From 32 nodes upwards, the container
application shows a small performance advantage, up to 5% at 128 nodes,
with both implementations maintaining close standard deviation values.

Horovod 0.16.x with CUDA 10.0

In this test case, we select again the tf_cnn_benchmark [https://github.com/tensorflow/benchmarks] scripts from the Tensorflow project
but now we test all four different models that the benchmark supports, namely
the alexnet, inception3, resnet50 and vgg16. The batch size is again 64
and for each of the models we use a node range of 1 to 12 nodes.

Running the container

If the tensorflow-benchmark code is present in a directory which Sarus is
configured to automatically mount inside the container (here referred by the
arbitrary variable $INPUT), we can run the container application as follows:

srun -C gpu -N4 sarus run --mpi \
 ethcscs/horovod:0.16.1-tf1.13.1-cuda10.0-mpich3.1.4-nccl \
 python ${INPUT}/tensorflow-benchmarks/scripts/tf_cnn_benchmarks/tf_cnn_benchmarks.py \
 --model resnet50 --batch_size 64 --variable_update horovod

Alternatively, the --mount option can be used:

srun -C gpu -N4 -t5 sarus run --mpi \
 --mount=type=bind,src=<path-to-parent-directory>/tensorflow-benchmarks/scripts/,dst=/tf-scripts \
 ethcscs/horovod:0.16.1-tf1.13.1-cuda10.0-mpich3.1.4-nccl \
 python /tf-scripts/tf_cnn_benchmarks/tf_cnn_benchmarks.py \
 --model resnet50 --batch_size 64 --variable_update horovod

The above commands are using the resnet50 model. Using the --model
option it is possible to run the benchmarks with the other models as well.

Native application

For the native implementation, we use Horovod 0.16.0 with TensorFlow 1.12.0,
built using Cray Python 3.6, the Python extensions provided by the Cray
Programming Environment 19.03, CUDA 10.0, cuDNN 7.5.6 and NCCL 2.4.2. These
installations are performed by CSCS staff and are available on Piz Daint through
environment modules.

Container image and Dockerfile

We start from the reference Dockerfile provided by Horovod for version 0.16.1
and modify it to use Python 3.5, TensorFlow 1.13.1, CUDA 10.0, cuDNN 7.5.0. and
NCCL 2.4.2. These specific versions of CUDA and cuDNN are required because they
are the ones against which the version of TensorFlow available through pip
has been built. We also replace OpenMPI with MPICH 3.1.4. and remove the
installation of OpenSSH, as the containers will be able to communicate thanks to
Slurm and the native MPI hook Finally, we instruct Horovod to use NVIDIA’s NCCL
library for every MPI operation by adding the appropriate environment variables
to the /etc/nccl.conf configuration file.
The resulting Dockerfile
is the following:

FROM nvidia/cuda:10.0-devel-ubuntu16.04

Define the software versions
ENV HOROVOD_VERSION=0.16.1 \
 TENSORFLOW_VERSION=1.13.1 \
 CUDNN_VERSION=7.5.0.56-1+cuda10.0 \
 NCCL_VERSION=2.4.2-1+cuda10.0

Python version
ARG python=3.5
ENV PYTHON_VERSION=${python}

Install the necessary packages
RUN apt-get update && \
 apt-get install -y --no-install-recommends \
 cmake git curl vim wget ca-certificates \
 libibverbs-dev \
 libcudnn7=${CUDNN_VERSION} \
 libnccl2=${NCCL_VERSION} \
 libnccl-dev=${NCCL_VERSION} \
 libjpeg-dev \
 libpng-dev \
 python${PYTHON_VERSION} python${PYTHON_VERSION}-dev

Create symbolic link in order to make the installed python default
RUN ln -s /usr/bin/python${PYTHON_VERSION} /usr/bin/python

Download pip bootstrap script and install pip
RUN curl -O https://bootstrap.pypa.io/get-pip.py && \
 python get-pip.py && \
r m get-pip.py

Install Tensorflow, Keras and h5py
RUN pip install tensorflow-gpu==${TENSORFLOW_VERSION} keras h5py

Install MPICH 3.1.4
RUN cd /tmp \
 && wget -q http://www.mpich.org/static/downloads/3.1.4/mpich-3.1.4.tar.gz \
 && tar xf mpich-3.1.4.tar.gz \
 && cd mpich-3.1.4 \
 && ./configure --disable-fortran --enable-fast=all,O3 --prefix=/usr \
 && make -j$(nproc) \
 && make install \
 && ldconfig \
 && cd .. \
 && rm -rf mpich-3.1.4 mpich-3.1.4.tar.gz \
 && cd /

Install Horovod
RUN ldconfig /usr/local/cuda-10.0/targets/x86_64-linux/lib/stubs && \
 HOROVOD_GPU_ALLREDUCE=NCCL HOROVOD_WITH_TENSORFLOW=1 pip install --no-cache-dir horovod==${HOROVOD_VERSION} && \
l dconfig

NCCL configuration
RUN echo NCCL_DEBUG=INFO >> /etc/nccl.conf && \
 echo NCCL_IB_HCA=ipogif0 >> /etc/nccl.conf && \
 echo NCCL_IB_CUDA_SUPPORT=1 >> /etc/nccl.conf

Used OCI hooks

	NVIDIA Container Runtime hook

	Native MPI hook (MPICH-based)

Results

We measure the performance in images/sec as reported by the application logs by
taking the mean value based on 5 different runs for each model and node number.
The results are showcased in the following Figure:

[image: TensorFlow with Horovod results]
Comparison of performance between native and Sarus-deployed
container versions of TensorFlow with Horovod on Piz Daint.

We observe that performance of the container-based horovod-tensorflow is
identical to the native one. An slight increased performance of the
containized solution is observed only for the alexnet model as the number of
nodes increases.

PyFR

PyFR [http://www.pyfr.org] is a Python code for solving high-order
computational fluid dynamics problems on unstructured grids. It leverages
symbolic manipulation and runtime code generation in order to run different
high-performance backends on a variety of hardware platforms. The
characteristics of Flux Reconstruction make the method suitable for efficient
execution on modern streaming architectures, and PyFR has been demonstrated to
achieve good portability 1 and scalability on some of the world’s most
powerful HPC systems: most notably, a contribution based on PyFR was selected
as one of the finalists for the 2016 ACM Gordon Bell Prize 2.

Test case

As test case, we select the 2D Euler vortex example bundled with the PyFR
source code. We run the example on 4 nodes with GPU acceleration enabled. We
do not measure performance with this test and we do not make comparisons with a
native implementation.

Running the container

We assume that a host scratchpad directory is configured to be mounted
automatically inside the container by Sarus, and is accessible at the path
defined by $SCRATCH. Documentation can be found on this dedicated page:
Mounting custom directories into the container. For instance:
--mount=type=bind,source=$SCRATCH,destination=$SCRATCH

First step is to use an interactive container to
prepare the simulation data:

Launch interactive container
srun -C gpu -N1 -t10 --pty sarus run --tty \
 ethcscs/pyfr:1.8.0-cuda9.2-ubuntu16.04 bash

then within the container, prepare the data:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	#!/bin/bash

From the container:
copy the example data to the scratch directory
mkdir $SCRATCH/pyfr/
cd PyFR-1.8.0/examples/
cp -r euler_vortex_2d/ $SCRATCH/pyfr/euler_vortex_2d

Convert mesh data to PyFR format
cd $SCRATCH/pyfr/euler_vortex_2d
pyfr import euler_vortex_2d.msh euler_vortex_2d.pyfrm

Partition the mesh and exit the container
pyfr partition 4 euler_vortex_2d.pyfrm .

and terminate the interactive session:

exit

Now that the data is ready, we can launch the multi-node simulation. Notice that
we use the --pty option to srun in order to visualize and update correctly
PyFR’s progress bar (which we request with the -p option):

srun -C gpu -N4 -t1 --pty sarus run \
 --mpi \
 ethcscs/pyfr:1.8.0-cuda9.2-ubuntu16.04 \
 pyfr run -b cuda -p \
 $SCRATCH/pyfr/euler_vortex_2d/euler_vortex_2d.pyfrm \
 $SCRATCH/pyfr/euler_vortex_2d/euler_vortex_2d.ini

A typical output will look like:

100.0% [===========================>] 100.00/100.00 daint: 00:00:29 rem: 00:00:00

Container image and Dockerfile

The container image ethcscs/pyfr:1.8.0-cuda9.2-ubuntu16.04 (based on Nvidia
cuda/9.2) used for this test case can be pulled from CSCS DockerHub [https://hub.docker.com/r/ethcscs/pyfr/tags] or be rebuilt with this
Dockerfile:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

	FROM nvidia/cuda:9.2-devel-ubuntu16.04

LABEL com.pyfr.version="1.8.0"
LABEL com.python.version="3.5"

Install system dependencies
Metis is a library for mesh partitioning:
http://glaros.dtc.umn.edu/gkhome/metis/metis/overview
RUN apt-get update && apt-get install -y \
 unzip \
 wget \
 build-essential \
 gfortran-5 \
 strace \
 realpath \
 libopenblas-dev \
 liblapack-dev \
 python3-dev \
 python3-setuptools \
 python3-pip \
 libhdf5-dev \
 libmetis-dev \
 --no-install-recommends && \
 rm -rf /var/lib/apt/lists/*

Install MPICH 3.1.4
RUN wget -q http://www.mpich.org/static/downloads/3.1.4/mpich-3.1.4.tar.gz && \
 tar xvf mpich-3.1.4.tar.gz && \
 cd mpich-3.1.4 && \
 ./configure --disable-fortran --prefix=/usr && \
 make -j$(nproc) && \
 make install && \
 cd .. && \
 rm -rf mpich-3.1.4.tar.gz mpich-3.1.4 && \
 ldconfig

Create new user
RUN useradd docker
WORKDIR /home/docker

Install Python dependencies
RUN pip3 install numpy>=1.8 \
 pytools>=2016.2.1 \
 mako>=1.0.0 \
 appdirs>=1.4.0 \
 mpi4py>=2.0 && \
 pip3 install pycuda>=2015.1 \
 h5py>=2.6.0 && \
 wget -q -O GiMMiK-2.1.tar.gz \
 https://github.com/vincentlab/GiMMiK/archive/v2.1.tar.gz && \
 tar -xvzf GiMMiK-2.1.tar.gz && \
 cd GiMMiK-2.1 && \
 python3 setup.py install && \
 cd .. && \
 rm -rf GiMMiK-2.1.tar.gz GiMMiK-2.1

Set base directory for pyCUDA cache
ENV XDG_CACHE_HOME /tmp

Install PyFR
RUN wget -q -O PyFR-1.8.0.zip http://www.pyfr.org/download/PyFR-1.8.0.zip && \
 unzip -qq PyFR-1.8.0.zip && \
 cd PyFR-1.8.0 && \
 python3 setup.py install && \
 cd .. && \
 rm -rf PyFR-1.8.0.zip

CMD ["pyfr --help"]

Used OCI hooks

	NVIDIA Container Runtime hook

	Native MPI hook (MPICH-based)

References

	1

	F.D. Witherden, B.C. Vermeire, P.E. Vincent,Heterogeneous computing on
mixed unstructured grids with PyFR, Computers & Fluids, Volume 120, 2015,
Pages 173-186, ISSN 0045-7930,
https://doi.org/10.1016/j.compfluid.2015.07.016

	2

	P. Vincent, F. Witherden, B. Vermeire, J. S. Park and A. Iyer, “Towards
Green Aviation with Python at Petascale”, SC ‘16: Proceedings of the
International Conference for High Performance Computing, Networking, Storage
and Analysis, Salt Lake City, UT, 2016, pp. 1-11.
https://doi.org/10.1109/SC.2016.1

Intel Cluster Edition 19.01

This section provides the instructions to build Intel Parallel Studio 2019 Update 1 based on the Centos 7 distribution: Intel Parallel Studio provides a complete environment to build an optimised appication, since it features compilers, communication and mathematical libraries.

Please note that the Intel license prevents the redistribution of the software, therefore the license file needs to be available locally on the system where you are building the image:
the license file is called intel_license_file.lic in the example Dockerfile provided below and it will be copied inside the container during the installation.

Furthermore, you need to create a local configuration file with the instructions required to proceed with the silent installation of Intel Parallel Studio:
the name of the file is intel19.01_silent.cfg in the example below and it will provide the installation of the Intel C, C++ and Fotran Compiler together with the Intel MPI library and the Intel MKL.

Container image and Dockerfile

The starting point is the official image of CentOS 7: on top of that image, you need to install the required build tools and proceed with the silent installation of the Intel compiler.

FROM centos:7

SHELL ["/bin/bash", "--login", "-c"]

RUN yum install -y cpio

WORKDIR /usr/local/src

install Intel Compiler and Intel MPI
COPY intel_license_file.lic /opt/intel/licenses/USE_SERVER.lic
ADD intel19.01_silent.cfg .
ADD parallel_studio_xe_2019_update1_cluster_edition_online.tgz .

RUN cd parallel_studio_xe_2019_update1_cluster_edition_online \
 && ./install.sh --ignore-cpu -s /usr/local/src/intel19.01_silent.cfg

RUN echo -e "source /opt/intel/bin/compilervars.sh intel64 \nsource /opt/intel/mkl/bin/mklvars.sh intel64 \nsource /opt/intel/impi/2019.1.144/intel64/bin/mpivars.sh release" >> /etc/profile.d/intel.sh \
 && echo -e "/opt/intel/lib/intel64 \n/opt/intel/mkl/lib/intel64 \n/opt/intel/impi/2019.1.144/intel64/lib \n/opt/intel/impi/2019.1.144/intel64/lib/release \n/opt/intel/impi/2019.1.144/intel64/libfabric/lib \n/opt/intel/impi/2019.1.144/intel64/libfabric/lib/prov" > /etc/ld.so.conf.d/intel.conf \
 && ldconfig

Please note that using the login shell will source the profile files and therefore update the paths to retrieve compiler executables and libraries:
however it will have an effect only on the commands executed within the Dockerfile, serving as a reminder to use it when building applications with the Intel image.

The instructions above will copy the local license file intel_license_file.lic to /opt/intel/licenses/USE_SERVER.lic, since the license file of the example will use a server to authenticate:
please check that the address of the nameserver provided in DOCKER_OPTS will be able to resolve the name of the license server and that it is consistent with the nameservers listed in /etc/resolv.conf.

The following silent configuration file provides a minimal list of the Intel COMPONENTS necessary for the installation: the advantage of the minimal list is the reduced amount of disk space required while building the image:

ACCEPT_EULA=accept
CONTINUE_WITH_OPTIONAL_ERROR=yes
PSET_INSTALL_DIR=/opt/intel
CONTINUE_WITH_INSTALLDIR_OVERWRITE=yes
COMPONENTS=;intel-clck__x86_64;intel-icc__x86_64;intel-ifort__x86_64;intel-mkl-core-c__x86_64;intel-mkl-cluster-c__noarch;intel-mkl-gnu-c__x86_64;intel-mkl-core-f__x86_64;intel-mkl-cluster-f__noarch;intel-mkl-gnu-f__x86_64;intel-mkl-f__x86_64;intel-imb__x86_64;intel-mpi-sdk__x86_64
PSET_MODE=install
ACTIVATION_LICENSE_FILE=/opt/intel/licenses/USE_SERVER.lic
ACTIVATION_TYPE=license_server
AMPLIFIER_SAMPLING_DRIVER_INSTALL_TYPE=kit
AMPLIFIER_DRIVER_ACCESS_GROUP=vtune
AMPLIFIER_DRIVER_PERMISSIONS=666
AMPLIFIER_LOAD_DRIVER=no
AMPLIFIER_C_COMPILER=none
AMPLIFIER_KERNEL_SRC_DIR=none
AMPLIFIER_MAKE_COMMAND=/usr/bin/make
AMPLIFIER_INSTALL_BOOT_SCRIPT=no
AMPLIFIER_DRIVER_PER_USER_MODE=no
SIGNING_ENABLED=yes
ARCH_SELECTED=INTEL64

The docker command line used to build the Intel image described in the Dockerfile above (save it as intel19.01-cuda10.1.docker) is the following:
`
docker build --network=host -f intel19.01-cuda10.1.docker -t intel:19.01-cuda10.1 .
`
The command line argument –network=host sets the networking mode for the RUN instructions during the build phase to match the host network configuration.

Index

 _static/file.png

_static/minus.png

_static/plus.png

_images/horovod-results_old.png
images/sec

10%

10°

Performance

Speedup

— Native
—— Container

Speedup

100

— Native
—— Container -~
--- ideal

16
Nodes.

32

64

128

2 4 8 16 32 64 128
Nodes.

_images/horovod-results_new.png
1800

1600

1400

1200

images/sec
s B
g 8
g 8

600

400

200

1600

1400

1200

5
8
g

images/sec
®
]
g

600

400

200

inception3
—— sarus

—* native 2500
2000

9

3
2 1500

<3

]

E
1000
500

vgglé
SEILs 6000
== native

5000

9

a
& 4000

4

<3

g

E
3000
2000

2 4 6 8 10 12

nodes

—— sarus

.

native

—— sarus

o

native

Resnet 50

alexnet

nodes

10

12

nav.xhtml

 Table of Contents

 		
 Sarus - An OCI-compatible container engine for HPC

 		
 Quickstart

 		
 Install Sarus

 		
 Use Sarus

 		
 Overview

 		
 Sarus architecture

 		
 Importing container images

 		
 Local system repositories

 		
 Container instantiation

 		
 Root filesystem

 		
 config.json

 		
 Container launch

 		
 Custom installation

 		
 Requirements

 		
 Operating System

 		
 Software

 		
 Installation

 		
 Installing with Spack

 		
 Installing from source

 		
 Post-installation actions

 		
 Review permissions required by Sarus

 		
 Load required kernel modules

 		
 Automatic update of Sarus’ passwd cache

 		
 Configuration

 		
 Basic configuration

 		
 Using the configure_installation script

 		
 Configuration file reference

 		
 Configuration file entries

 		
 Example configuration file

 		
 Configuring Sarus for OCI hooks

 		
 OCIHooks object format

 		
 Hooks use cases

 		
 User guides

 		
 User guide

 		
 Basic end-to-end user workflow

 		
 Additional features

 		
 Support for container customization through hooks

 		
 Running MPI applications without the native MPI hook

 		
 ABI compatibility and its implications

 		
 Creating custom Docker images with CUDA

 		
 Installing the CUDA Toolkit

 		
 Controlling the NVIDIA Container Runtime

 		
 Developer documentation

 		
 Class diagram

 		
 Running unit and integration tests

 		
 Unit tests

 		
 Integration tests

 		
 SSH Hook

 		
 Introduction

 		
 Overview of the user interface

 		
 Configuration by the system administrator

 		
 Architecture

 		
 The nitty gritty

 		
 Sarus Cookbook

 		
 Test Setup

 		
 Performance measurements

 		
 CUDA N-body

 		
 Test Case

 		
 Running the container

 		
 Running the native Application

 		
 Container image and Dockerfile

 		
 Required OCI hooks

 		
 Benchmarking results

 		
 OSU Micro benchmarks

 		
 Test cases

 		
 Running the container

 		
 Running the native application

 		
 Container images and Dockerfiles

 		
 Required OCI hooks

 		
 Benchmarking results

 		
 NVIDIA GPUDirect RDMA

 		
 Test case

 		
 Running the container

 		
 Running the native application

 		
 Container image and Dockerfile

 		
 Required OCI hooks

 		
 OpenMPI with SSH launcher

 		
 Test case

 		
 Container image and Dockerfile

 		
 Used OCI hooks

 		
 Running the container

 		
 GROMACS

 		
 Test case

 		
 Running the container

 		
 Running the native application

 		
 Container image and Dockerfile

 		
 Required OCI hooks

 		
 Results

 		
 TensorFlow with Horovod

 		
 Horovod 0.15.1 with CUDA 9.x

 		
 Horovod 0.16.x with CUDA 10.0

 		
 PyFR

 		
 Test case

 		
 Running the container

 		
 Container image and Dockerfile

 		
 Used OCI hooks

 		
 Intel Cluster Edition 19.01

 		
 Container image and Dockerfile

_images/class_diagram.png
<

o

man | parssCommandLinel} : Command

I<create>

R Tuntime

Command

executel}

T

CommandPull | [CommandLoad | [CommandRun

Runtime

GaBundleContiy

setupoCiBundlel}
executeContainer(}

Common
image_manager
imagestore Sarusimage
imageiD
TmageManager digest
addimage! : Sarusimage) datasize
removelmagel} created
pullmagely listimages!} imageFile
oadimaget} —_— metadataFile
listimages!} <create>
removelmagel} [~ Lirearen T -

' Squashisimage TmageMetadata
! omd
<create entry
¢ Squashisimagelexpandedimage)
! a gelexp 9¢ workdir
! env
| [nputimage <create>
| e
1 [expandly 99 Singleton class extensively
! | _ _ Jused by the rest of the
! <create=
| create: e system to log messages
Loadedimage Pulledimage [~
9 9 Config Class extensively used
pullimaget} by the rest of the system
o pass configurations
L - {between components

